Question

Let Y have the lognormal distribution with mean 82.5 and variance 146.00. Compute the following probabilities...

Let Y have the lognormal distribution with mean 82.5 and variance 146.00. Compute the following probabilities

P(80 < Y < 108)

Homework Answers

Answer #1

Given,

= 82.5 , = sqrt ( 146)

We convert this to standard normal as

P(Y < y) = P( Z < ( y - ) / )

So .,

P(80 < Y < 108) = P(Y < 108) - P(Y < 80)

= P(Z < (108 - 82.5) / sqrt(146) ) - P(Z < (80 - 82.5) / sqrt(146) )

= P(Z < 2.11) - P(Z < -0.21)

= 0.9826 - 0.4168 (From Z table)

= 0.5658

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Y have the lognormal distribution with mean 82.5 and variance 146.00. Compute the following probabilities....
Let Y have the lognormal distribution with mean 82.5 and variance 146.00. Compute the following probabilities. (You may find it useful to reference the z table. Round your intermediate calculations to at least 4 decimal places, “z” value to 2 decimal places, and final answers to 4 decimal places.) p(Y>208) P(80<Y< 108)
Let Y have the lognormal distribution with mean 83.6 and variance 169.70. Compute the following probabilities....
Let Y have the lognormal distribution with mean 83.6 and variance 169.70. Compute the following probabilities. a. P(Y > 96) b. P(77 < Y < 96)
Let Y have the lognormal distribution with mean 68.8 and variance 168.50. Compute the following probabilities....
Let Y have the lognormal distribution with mean 68.8 and variance 168.50. Compute the following probabilities. (You may find it useful to reference the z table. Round your intermediate calculations to at least 4 decimal places, “z” value to 2 decimal places, and final answers to 4 decimal places.) a. P(Y > 95) b. P(60 < Y < 95)
Let Y have the lognormal distribution with mean 78.1 and variance 167.80. Compute the following probabilities....
Let Y have the lognormal distribution with mean 78.1 and variance 167.80. Compute the following probabilities. (You may find it useful to reference the z table. Round your intermediate calculations to at least 4 decimal places, “z” value to 2 decimal places, and final answers to 4 decimal places.) a. P(Y > 105) b. P(74 < Y < 105)
Let Y have the lognormal distribution with mean 67.5 and variance 143.30. Compute the following probabilities....
Let Y have the lognormal distribution with mean 67.5 and variance 143.30. Compute the following probabilities. (You may find it useful to reference the z table. Round your intermediate calculations to at least 4 decimal places, “z” value to 2 decimal places, and final answers to 4 decimal places.) a.P(Y > 78) b.P(62 < Y < 78)
Y~ Normal Distribution with mean 4 and variance 4. a. We have P(Y< y)=.9 find the...
Y~ Normal Distribution with mean 4 and variance 4. a. We have P(Y< y)=.9 find the y b. Find P(1<Y<2) c. Find P(Y< -2) d. Find P(Y>-2)
Let X be normally distributed with mean 3 and variance σ2 . Let Y = 3X...
Let X be normally distributed with mean 3 and variance σ2 . Let Y = 3X + 7. A) Find the mean, variance, and PDF of Y. (The other listed solution does not have the PDF.) B) Assuming P(Y ≤ 17) = .6331, find σ2 . C) Assuming σ2 = 1, find the PDF of W = (|Y|)1/2 + 1.
1. Compute the mean and variance of the following probability distribution. (Round your answers to 2...
1. Compute the mean and variance of the following probability distribution. (Round your answers to 2 decimal places.) x P(x) 4 0.10 7 0.25 10 0.30 13 0.35 2. Given a binomial distribution with n = 6 and π⁢= .25. Determine the probabilities of the following events using the binomial formula. (Round your answers to 4 decimal places.) x = 2 x = 3 3. A probability distribution is a listing of all the outcomes of an experiment and the...
Let X and Y have a bivariate normal distribution with parameters μX = 0, σX =...
Let X and Y have a bivariate normal distribution with parameters μX = 0, σX = 3; μY = 8, σY = 5; ρ = 0.6. Find the following probabilities. P(-6 < X < 6) P(6 < Y < 14 | X = 2)
Let X and Y have a bivariate normal distribution with parameters μX = 0, σX =...
Let X and Y have a bivariate normal distribution with parameters μX = 0, σX = 3; μY = 8, σY = 5; ρ = 0.6. Find the following probabilities. (A) P(-6 < X < 6) (B) P(6 < Y < 14 | X = 2)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT