Part a)
X ~ N ( µ = 89 , σ = 23 )
P ( X <= 100 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 100 - 89 ) / 23
Z = 0.4783
P ( ( X - µ ) / σ ) < ( 100 - 89 ) / 23 )
P ( X <= 100 ) = P ( Z < 0.4783 )
P ( X <= 100 ) = 0.6838
Part b)
X ~ N ( µ = 89 , σ = 23 )
P ( X < 140 )
Standardizing the value
Z = ( X - µ ) / σ
Z = ( 140 - 89 ) / 23
Z = 2.2174
P ( ( X - µ ) / σ ) < ( 140 - 89 ) / 23 )
P ( X < 140 ) = P ( Z < 2.2174 )
P ( X < 140 ) = 0.9867
Percentile = 0.9867 * 100 = 98.67 ≈ 99th percentile.
Part c)
X ~ N ( µ = 89 , σ = 23 )
P ( X > 90 ) = 1 - P ( X < 90 )
Standardizing the value
Z = ( X - µ ) / ( σ / √(n))
Z = ( 90 - 89 ) / ( 23 / √ ( 50 ) )
Z = 0.3074
P ( ( X - µ ) / ( σ / √ (n)) > ( 90 - 89 ) / ( 23 / √(50)
)
P ( Z > 0.31 )
P ( X̅ > 90 ) = 1 - P ( Z < 0.31 )
P ( X̅ > 90 ) = 1 - 0.6207
P ( X̅ > 90 ) = 0.3793
Get Answers For Free
Most questions answered within 1 hours.