Independent random samples, each containing 80 observations,
were selected from two populations. The samples from populations 1
and 2 produced 16 and 10 successes, respectively.
Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.1
(a) The test statistic is
(b) The P-value is
(c) The final conclusion is
A. There is not sufficient evidence to reject the
null hypothesis that (p1−p2)=0
B. We can reject the null hypothesis that
(p1−p2)=0 and accept that (p1−p2)≠0
The statistic software output for this problem is :
Two sample proportion summary hypothesis test:
p1 : proportion of successes for population 1
p2 : proportion of successes for population 2
p1 - p2 : Difference in proportions
H0 : p1 - p2 = 0
HA : p1 - p2 ≠ 0
Hypothesis test results:
Difference | Count1 | Total1 | Count2 | Total2 | Sample Diff. | Std. Err. | Z-Stat | P-value |
---|---|---|---|---|---|---|---|---|
p1 - p2 | 16 | 80 | 10 | 80 | 0.075 | 0.058329613 | 1.2857963 | 0.1985 |
(a) The test statistic is 1.286
(b) The P-value is 0.1985
(c) The final conclusion is :
A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0
Get Answers For Free
Most questions answered within 1 hours.