Question

Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations...

Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations 1 and 2 produced 16 and 10 successes, respectively.
Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.1

(a) The test statistic is

(b) The P-value is

(c) The final conclusion is

A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0
B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0

Homework Answers

Answer #1

The statistic software output for this problem is :

Two sample proportion summary hypothesis test:


p1 : proportion of successes for population 1
p2 : proportion of successes for population 2
p1 - p2 : Difference in proportions
H0 : p1 - p2 = 0
HA : p1 - p2 ≠ 0

Hypothesis test results:

Difference Count1 Total1 Count2 Total2 Sample Diff. Std. Err. Z-Stat P-value
p1 - p2 16 80 10 80 0.075 0.058329613 1.2857963 0.1985

(a) The test statistic is 1.286

(b) The P-value is 0.1985

(c) The final conclusion is :

A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations 1 and 2 produced 73 and 64 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.09 The P-value is The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0 B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 26 and 15 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)>0 Use α=0.08 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)>0 B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0
1 point) Independent random samples, each containing 80 observations, were selected from two populations. The samples...
1 point) Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations 1 and 2 produced 30 and 23 successes, respectively. Test H0:(p1−p2)=0H0:(p1−p2)=0 against Ha:(p1−p2)≠0Ha:(p1−p2)≠0. Use α=0.01α=0.01. (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0(p1−p2)=0 and accept that (p1−p2)≠0(p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0(p1−p2)=0.
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 42 and 30 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.09 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0(p1−p2)=0 and accept that (p1−p2)≠0(p1−p2)≠0. B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0(p1−p2)=0.
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from...
Independent random samples, each containing 500 observations, were selected from two binomial populations. The samples from populations 1 and 2 produced 388 and 188 successes, respectively. (a) Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.04 test statistic = rejection region |z|> The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0.   B. We can reject the null hypothesis that (p1−p2)=0 and support that (p1−p2)≠0. (b) Test H0:(p1−p2)≤0 against Ha:(p1−p2)>0. Use α=0.03 test statistic = rejection...
Independent random samples, each containing 70 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 70 observations, were selected from two populations. The samples from populations 1 and 2 produced 42 and 35 successes, respectively. Test H0:(p1−p2)=0 H 0 : ( p 1 − p 2 ) = 0 against Ha:(p1−p2)≠0 H a : ( p 1 − p 2 ) ≠ 0 . Use α=0.06 α = 0.06 . (a) The test statistic is (b) The P-value is (c) The final conclusion is A. There is not sufficient evidence...
Independent random samples, each containing 70 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 70 observations, were selected from two populations. The samples from populations 1 and 2 produced 33 and 23 successes, respectively. Test H 0 :( p 1 − p 2 )=0 H0:(p1−p2)=0 against H a :( p 1 − p 2 )≠0 Ha:(p1−p2)≠0 . Use α=0.01 α=0.01 . (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that ( p 1 − p 2...
Independent random samples, each containing 50 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 50 observations, were selected from two populations. The samples from populations 1 and 2 produced 31 and 25 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.05. (a) The test statistic is (b) The P-value is
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations 1 and 2 produced 44 and 35 successes, respectively. Test H0:(p1?p2)=0H0:(p1?p2)=0 against Ha:(p1?p2)>0Ha:(p1?p2)>0. Use ?=0.02?=0.02 (a) The test statistic is: (b) The P-value is:
(1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples...
(1 point) Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 34 and 29 successes, respectively. Test H0:(p1−p2)=0 H 0 : ( p 1 − p 2 ) = 0 against Ha:(p1−p2)≠0 H a : ( p 1 − p 2 ) ≠ 0 . Use α=0.07 α = 0.07 . (a) The test statistic is (b) The P-value is