Question

For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5...

For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5 7 8 y 5 7 6 13 14 ​(a)  Find the estimates of beta 0 and beta 1. beta 0almost equalsb 0equals nothing ​(Round to three decimal places as​ needed.) beta 1almost equalsb 1equals nothing ​(Round to three decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for sigma. s Subscript eequals nothing ​(Round to four decimal places as​ needed.) ​(c)  Assuming the residuals are normally​ distributed, determine s Subscript b 1 Baseline . s Subscript b 1equals nothing ​(Round to three decimal places as​ needed.) ​(d)  Assuming the residuals are normally​ distributed, test Upper H 0 : beta 1 equals 0 versus Upper H 1 : beta 1 not equals 0 at the alpha equals 0.05 level of significance. Use the​ P-value approach. The​ P-value for this test is nothing. ​(Round to three decimal places as​ needed.) Make a statement regarding the null hypothesis and draw a conclusion for this test. Choose the correct answer below. A. Reject Upper H 0. There is sufficient evidence at the alpha equals 0.05 level of significance to conclude that a linear relation exists between x and y. B. Reject Upper H 0. There is not sufficient evidence at the alpha equals 0.05 level of significance to conclude that a linear relation exists between x and y. C. Do not reject Upper H 0. There is not sufficient evidence at the alpha equals 0.05 level of significance to conclude that a linear relation exists between x and y. D. Do not reject Upper H 0. There is sufficient evidence at the alpha equals 0.05 level of significance to conclude that a linear relation exists between x and y.

Homework Answers

Answer #1

a)

beta 0 =-1.3605

beta1 =1.9186

b)

SSE =Syy-(Sxy)2/Sxx= 6.686
s2 =SSE/(n-2)= 2.2287
std error σ              = =se =√s2= 1.4929

c)

estimated std error of slope =se(β1) =s/√Sxx= 0.3600

d)

test stat t = β1/se(β1)= = 5.330
p value: = 0.013

reject Ho There is sufficient evidence at the alpha equals 0.05 level of significance to conclude that a linear relation exists between x and y.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
For the data set shown? below, complete parts? (a) through? (d) below. x 3 4 5...
For the data set shown? below, complete parts? (a) through? (d) below. x 3 4 5 7 8 y 4 6 8 12 13 ?(a)??Find the estimates of beta 0 and beta 1. beta 0almost equalsb 0equals nothing ?(Round to three decimal places as? needed.) beta 1almost equalsb 1equals nothing ?(Round to three decimal places as? needed.) ?(b)??Compute the standard? error, the point estimate for sigma. s Subscript eequals nothing ?(Round to four decimal places as? needed.) ?(c)??Assuming the residuals...
For the data set shown below, complete parts (a) through (d). X Y 20 102 30...
For the data set shown below, complete parts (a) through (d). X Y 20 102 30 97 40 93 50 83 60 72 (a) Find the estimates of Bo and B1. Bo=bo= _____ (Round to three decimal places as needed.) B1=b1= ______(Round to four decimal places as needed.) (b) Compute the standard error the point estimate for se= ____ (c) Assuming the residuals are normally distributed, determine Sb1=____ (Round to four decimal places as needed.) (d) Assuming the residuals are...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 102 95 91 83 70 ​ (a) Use technology to find the estimates of beta 0 and beta 1. beta 0 almost equals b0= ​ (Round to two decimal places as​ needed.) beta1 almost equals b1= (Round to two decimal places as​ needed.) (b) Use the technology to compute the standard error, the point estimate for o. Sc= (Round to four...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 33 44 55 77 88 y 44 66 77 1313 1515 ​(a)  Find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=negative 3.244−3.244 ​(Round to three decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=2.2672.267 ​(Round to three decimal places as​ needed.)​(b)   Compute the standard​ error, the point estimate for sigmaσ. s Subscript eseequals=nothing ​(Round to four decimal places as​ needed.)
As concrete​ cures, it gains strength. The following data represent the​ 7-day and​ 28-day strength in...
As concrete​ cures, it gains strength. The following data represent the​ 7-day and​ 28-day strength in pounds per square inch​ (psi) of a certain type of concrete. Complete parts​ (a) through​ (f) below. ​7-Day Strength​ (psi), x 24802480 33903390 23002300 33803380 26202620 Open in StatCrunch + Copy to Clipboard + Open in Excel + ​28-Day Strength​ (psi), y 41204120 52205220 40704070 50205020 41904190 ​(a) Treating the​ 7-day strength as the explanatory​ variable, x, use technology to determine the estimates of...
The table to the right contains observed values and expected values in parentheses for two categorical​...
The table to the right contains observed values and expected values in parentheses for two categorical​ variables, X and​ Y, where variable X has three categories and variable Y has two categories. Use the table to complete parts ​(a) and ​(b) below. Upper X 1 Upper X 2 Upper X 3 Upper Y 1 34 left parenthesis 35.67 right parenthesis 43 left parenthesis 44.77 right parenthesis 51 left parenthesis 47.56 right parenthesis Upper Y 2 17 left parenthesis 15.33 right...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 93 81 68 ​(a) Use technology to find the estimates of beta β0 and beta β1. beta β0almost equals≈b0equals=nothing ​(Round to two decimal places as​ needed.) beta β1almost equals≈b1equals=nothing ​(Round to two decimal places as​ needed.) B.)
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40...
For the data set shown​ below, complete parts ​(a) through ​(d) below. x 20 30 40 50 60 y 100 97 89 83 70 ​(a) Use technology to find the estimates of beta 0β0 and beta 1β1. beta 0β0almost equals≈b 0b0equals=nothing ​(Round to two decimal places as​ needed.) beta 1β1almost equals≈b 1b1equals=nothing ​(Round to two decimal places as​ needed.)
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5...
For the data set shown​ below, complete parts​ (a) through​ (d) below. x 3 4 5 7 8 y 4 7 8 12 13 (a) Find the estimates of β0 and β1. β0 ≈b0 = ____ ​(Round to three decimal places as​ needed.) β1 ≈b1 = ____ (Round to three decimal places as​ needed.) ​(b)  Compute the standard​ error, the point estimate for σ. se= ______ ​(c)  Assuming the residuals are normally​ distributed, determine sb1 . Sb1= _____ (d) ​Assuming...
A pediatrician wants to determine the relation that may exist between a​ child's height and head...
A pediatrician wants to determine the relation that may exist between a​ child's height and head circumference. She randomly selects 5 children and measures their height and head circumference. The data are summarized below. A normal probability plot suggests that the residuals are normally distributed. Complete parts​ (a) and​ (b) below. Height​ (inches), x 27 25 26.75 27.5 26.5 Head Circumference​ (inches), y 17.5 16.9 17.3 17.5 17.3 ​(a) Use technology to determine s Subscript b 1sb1. equals=nothing   (b) Test...