Question

1. Consider this hypothesis test: H0: p1 - p2 = 0 Ha: p1 - p2 >...

1. Consider this hypothesis test:

H0: p1 - p2 = 0
Ha: p1 - p2 > 0

Here p1 is the population proportion of “yes” of Population 1 and p2 is the population proportion of “yes” of Population 2. Use the statistics data from a simple random sample of each of the two populations to complete the following: (8 points)

Population 1

Population 2

Sample Size (n)

400

600

Number of “yes”

300

426

  1. Compute the test statistic z.
  2. What is the p-value?
  3. Should H0 be rejected? Use the p-value and a level of significance of 0.05 to justify your answer.
  4. Use the above data to construct a 95% confidence interval for p1 - p2

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the hypothesis test below. ho: p1-p2 <=0 ha: p1-p2>0 The following results are for independent...
Consider the hypothesis test below. ho: p1-p2 <=0 ha: p1-p2>0 The following results are for independent samples taken from the two populations. Sample 1 Sample 2 n1 200 n2 300 p-bar 0.24 p-bar 0.17 Use pooled estimator of. a. What is the value of the test statistic (to 2 decimals)? b. What is the -value (to 4 decimals)? c. With , what is your hypothesis testing conclusion? - Select your answer -Conclude the difference between the proportions is greater than...
Use the sample data below to test the hypothese. H0: p1=p2=p3. Ha: Not all population proportions...
Use the sample data below to test the hypothese. H0: p1=p2=p3. Ha: Not all population proportions are the same. Population 1: yes 150 no 100. Population 2: yes 150 no 150. Population 3 yes 97 no 103. Where Pi is the population proportion of yes responses for population i. Using a .05 level of significance the p-value=____?
Use the sample data below to test the hypotheses H0: p1 = p2 = p3 Ha:...
Use the sample data below to test the hypotheses H0: p1 = p2 = p3 Ha: not all population proportions are equal where pi is the population proportion of Yes responses for population i. Response Populations 1 2 3 Yes 155 155 86 No 105 155 94 Find the value of the test statistic. (Round your answer to three decimal places.) Find the p-value. (Round your answer to four decimal places.) p-value = Using a 0.05 level of significance, state...
The null and alternative hypotheses are: H0:p1−p2=0H0:p1−p2=0 H1:p1−p2≠0H1:p1−p2≠0 A sample of 340 observations from the first...
The null and alternative hypotheses are: H0:p1−p2=0H0:p1−p2=0 H1:p1−p2≠0H1:p1−p2≠0 A sample of 340 observations from the first population indicated that X1 is 300. A sample of 320 observations from the second population revealed X2 to be 260. Use the 0.02 significance level to test the hypothesis. a. State the decision rule. (Negative answer should be indicated by a minus sign. Round the final answers to 2 decimal places.) The decision rule is to reject H0 if z   is outside  (  ,  ). b. Compute...
Use the sample data to test the hypothesis. H0:p1=p2=p3. Ha:Not all population proportions are the same...
Use the sample data to test the hypothesis. H0:p1=p2=p3. Ha:Not all population proportions are the same Population 1: yes 150 no 100. Population 2: yes 150 no 150. Population 3: yes 91 no 109. where Pi is the population proportion of yes responses for population i. Using a .05 level of significance. Compute the sample proportion for each population. Round your answers to two decimal places. P1=? P2=?P3? Use the multiple comparison procedure to determine which population proportions differ significantly....
Suppose that a hypothesis test is conducted to test the null hypothesis, H0: p1 = p2,...
Suppose that a hypothesis test is conducted to test the null hypothesis, H0: p1 = p2, using the sample data shown. Sample 1 Sample 2 n1 = 50 n2 = 50 x1 = 3 x2 = 7 Find the p-value for the test. A. .0072 B. .1201 C. .0613 D. .1824 AND Suppose that a hypothesis test is conducted to test the null hypothesis, H0: p1 = p2, using the sample data shown.      Sample 1          Sample 2       n1 = 122             n2 =...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2...
Consider the following competing hypotheses and accompanying sample data. Use Table 1. H0 : P1− P2 = 0.20 HA : P1− P2 ≠ 0.20   x1 = 150 x2 = 130   n1 = 250 n2 = 400 a. Calculate the value of the test statistic. (Round intermediate calculations to at least 4 decimal places and final answer to 2 decimal places.)   Test statistic    b. Approximate the p-value. p-value < 0.01 0.01 ≤ p-value < 0.025 0.025 ≤ p-value < 0.05...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following data are from matched samples taken from two populations. Compute the difference value for each element. (Use Population 1 − Population 2.) Element Population Difference 1 2 1 21 20 2 28 25 3 18 16 4 20 17 5 26 25 (b) Compute d. (c) Compute the standard deviation sd. (d) Conduct a hypothesis test using α = 0.05. Calculate the test statistic....
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following data are from matched samples taken from two populations. Compute the difference value for each element. (Use Population 1 − Population 2.) Element Population Difference 1 2 1 21 19 2 28 27 3 18 17 4 20 17 5 26 23 (b) Compute d. (c) Compute the standard deviation sd. (d) Conduct a hypothesis test using α = 0.05. Calculate the test statistic....
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following...
Consider the following hypothesis test. H0: μd ≤ 0 Ha: μd > 0 (a) The following data are from matched samples taken from two populations. Compute the difference value for each element. (Use Population 1 − Population 2.) Element Population Difference 1 2 1 21 20 2 28 27 3 18 16 4 20 17 5 26 23 (b) Compute d. (c) Compute the standard deviation sd. (d) Conduct a hypothesis test using α = 0.05. Calculate the test statistic....