Question

1) a). Prove or Disprove: "Every random variable has cumulative distribution". Justify b). If statement in...

1) a). Prove or Disprove: "Every random variable has cumulative distribution". Justify
b). If statement in problem (a) is true, does the existence of cumulative distributions function of a random variable imply the existence of probability density function? Justify.

Homework Answers

Answer #1

Since, Every Random Variable we select from some Population. so, there is something chance of selecting that random variable from the whole population

So this chance means the probability of selecting the random variable and also this random variable changes as the values changes and so every random varibale has cumulative distribution

And we know that derivative of Cumulative Distribution function is nothing but probability density function

so, the existence of cumulative distributions function of a random variable imply the existence of probability density function

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
- Determine the cumulative distribution function for the random variable with probability density function ?(?) =...
- Determine the cumulative distribution function for the random variable with probability density function ?(?) = 1 − 0.5? for 0 < ? < 2 millimeters. - Determine the mean and variance of the random variable with probability density function
If X is an exponential random variable with parameter λ, calculate the cumulative distribution function and...
If X is an exponential random variable with parameter λ, calculate the cumulative distribution function and the probability density function of exp(X).
A random variable X has the cumulative distribution function (cdf) given by F(x) = (1 +...
A random variable X has the cumulative distribution function (cdf) given by F(x) = (1 + e−x ) −1 , −∞ < x < ∞. (i) Find the probability density function (pdf) of X. (ii) Roughly, take 10 points in the range of x (5 points below 0 and 5 points more than 0) and plot the pdf on these 10 points. Does it look like the pdf is symmetric around 0? (iii) Also, find the expected value of X.
When we say Prove or disprove the following statements, “Prove” means you show the statement is...
When we say Prove or disprove the following statements, “Prove” means you show the statement is true proving the correct statement using at most 3 lines or referring to a textbook theorem. “Disprove” means you show a statement is wrong by giving a counterexample why that is not true). Are the following statements true or not? Prove or disprove these one by one. Show how the random variable X looks in each case. (a) E[X] < 0 for some random...
1. (a) Y1,Y2,...,Yn form a random sample from a probability distribution with cumulative distribution function FY...
1. (a) Y1,Y2,...,Yn form a random sample from a probability distribution with cumulative distribution function FY (y) and probability density function fY (y). Let Y(1) = min{Y1,Y2,...,Yn}. Write the cumulative distribution function for Y(1) in terms of FY (y) and hence show that the probability density function for Y(1) is fY(1)(y) = n{1−FY (y)}n−1fY (y). [8 marks] (b) An engineering system consists of 5 components connected in series, so, if one components fails, the system fails. The lifetimes (measured in...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when x < 0 = x2              when 0 ≤ x ≤ 1 = 1               when x > 1 Compute P(1/4 < X ≤ 1/2) What is f(x), the probability density function of X? Compute E[X]
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf)...
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf) f. Consider the random variable Y = X?b a for a > 0 and real b. (a) Let G(x) = P(Y x) denote the cdf of Y . What is the relationship between the functions G and F? Explain your answer clearly. (b) Let g(x) denote the pdf of Y . How are the two functions f and g related? Note: Here, Y is...
Identify the FALSE statement relative to a continuous random variable, x, and its probability distribution: Select...
Identify the FALSE statement relative to a continuous random variable, x, and its probability distribution: Select one: a. The distribution of x is modelled by a smooth curve called a probability density function. b. P(x = a) is given by the height of the density function above the point, a. c. The total area under the graph of the density function is 1. d. The area above an interval and below the density curve gives the probability of x lying...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
Suppose that the random variable X has the following cumulative probability distribution X: 0 1. 2....
Suppose that the random variable X has the following cumulative probability distribution X: 0 1. 2. 3. 4 F(X): 0.1 0.29. 0.49. 0.8. 1.0 Part 1:  Find P open parentheses 1 less or equal than x less or equal than 2 close parentheses Part 2: Determine the density function f(x). Part 3: Find E(X). Part 4: Find Var(X). Part 5: Suppose Y = 2X - 3,  for all of X, determine E(Y) and Var(Y)