Question

Let X be the time of the next earthquake in San Francisco and Y the time...

Let X be the time of the next earthquake in San Francisco and Y the time of the next earthquake in Los Angeles. X has exponential density λe−λx, x > 0 and Y has exponential density 2λe−2λy, y > 0 (λ > 0). Find the probability that the next earthquake occurs in Los Angeles.

A. 1/3

B. 1/2

C. 2/3

D. 1/8

Homework Answers

Answer #1

Answer:

Given,

fx,y(x,y) = fx(x)*fy(y)

Here x & y are independent

= 2^2*e^-(x+2y) , x>0 & y>0

P(Y < X) = fx,y(x,y) dx dy

= 2^2 e^-x*e^-2y dx dy

= 2^2 e^-2y*[e^-x/-] dy

= 2 [ e^-3y / (-3)]

= 2/3

Option C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X have exponential density f(x) = λe−λx if x > 0, f(x) = 0 otherwise...
Let X have exponential density f(x) = λe−λx if x > 0, f(x) = 0 otherwise (λ > 0). Compute the moment-generating function of X.
Let X1, X2, . . . , X10 be a sample of size 10 from an...
Let X1, X2, . . . , X10 be a sample of size 10 from an exponential distribution with the density function f(x; λ) = ( λe(−λx), x > 0, 0, otherwise. We reject H0 : λ = 1 in favor of H1 : λ = 2 if the observed value of Y = P10 i=1 Xi is smaller than 6. (a) Find the probability of type 1 error for this test. (b) Find the probability of type 2 error...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤ x < ∞ 0 otherwise } for some λ > 0. a. Compute the cumulative distribution function F(x), where F(x) = Prob(X < x) viewed as a function of x. b. The α-percentile of a random variable is the number mα such that F(mα) = α, where α ∈ (0, 1). Compute the α-percentile of the random variable X. The value of mα will...
Problem 0.1 Suppose X and Y are two independent exponential random variables with respective densities given...
Problem 0.1 Suppose X and Y are two independent exponential random variables with respective densities given by(λ,θ>0) f(x) =λe^(−xλ) for x>0 and g(y) =θe^(−yθ) for y>0. (a) Show that Pr(X<Y) =∫f(x){1−G(x)}dx {x=0, infinity] where G(x) is the cdf of Y, evaluated at x [that is,G(x) =P(Y≤x)]. (b) Using the result from part (a), show that P(X<Y) =λ/(θ+λ). (c) You install two light bulbs at the same time, a 60 watt bulb and a 100 watt bulb. The lifetime of the...
A researcher wished to compare the average daily hotel room rates between San Francisco and Los...
A researcher wished to compare the average daily hotel room rates between San Francisco and Los Angeles. The researcher obtained an SRS of 15 hotels in downtown San Francisco and found the sample mean x1=$156 , with a standard deviation s1= $15 . The researcher also obtained an independent SRS of 10 hotels in downtown Los Angeles and found the sample mean x2= $143, with a standard deviation s2=$10. Let 1 and 2 represent the mean cost of the populations...
Let X = the time between two successive arrivals at the drive-up window of a local...
Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ = 1/3 , compute the following: a. If no one comes to the drive-up window in the next 15 minutes (starting now), what is the chance that no one will show up during the next 20 minutes (starting now)? b. Find the probability that two people arrive in the next minute. c. How many people...
Let X = the time between two successive arrivals at the drive-up window of a local...
Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ=1, compute the following: a) The expected time between two successive arrivals b) The standard deviation of the time between success arrivals c) Calculate the probability P (X≤3) d) Calculate the probability P(2≤X≤5)
Let f(x, y) = c/x, 0 < y < x < 1 be the joint density...
Let f(x, y) = c/x, 0 < y < x < 1 be the joint density function of X and Y . a) What is the value of c? a) 1   b) 2 c) 1/2 d) 2/3 e) 3/2 b)what is the marginal probability density function of X? a) x/2 b)1 c)1/x d)x e)2x c)what is the marginal probability density function of Y ? a) ln y   b)−ln y c)1 d)y e)y2 d)what is E[X]? a)1 b)2 c)4 d)1/2 e)1/4
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
12. Let f(x, y) = c/x, 0 < y < x < 1 be the joint...
12. Let f(x, y) = c/x, 0 < y < x < 1 be the joint density function of X and Y . What is the value of c? a) 1; b) 2; c) 1/2; d) 2/3; e) 3/2. 13. In Problem 12, what is the marginal probability density function of X? a) x/2; b)1; c)1/x; d)x; e)2x. 14. In Problem 12, what is the marginal probability density function of Y ? a) ln y; b)−ln y; c)1; d)y; e)y2....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT