Question

Suppose that (X1, X2, . . . , Xn) is a random sample from a very...

Suppose that (X1, X2, . . . , Xn) is a random sample from a very large population (population size N n). What is the probability distributions of the first observation X1?

Homework Answers

Answer #1

this is the case of simple random sampling , to find the probability distribution of X1 , let us first findout the probabilty of getting this sample selected from the population of size N

there can be total of of Ncn number of samples from the population of size N , the probabilty of getting this sample selected is 1/ Ncn , now there are n total observation in this sample , so the probability of getting X1 selected is

1/ Ncn x 1/n (by the theorem of total probabilty)

probability of getting X1 selected is = 1/ Ncn x 1/n

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be a random sample of size n from...
Let X1, X2, . . . , Xn be a random sample of size n from a distribution with variance σ^2. Let S^2 be the sample variance. Show that E(S^2)=σ^2.
Suppose that we have a random sample X1, ** , Xn drawn from a distribution that...
Suppose that we have a random sample X1, ** , Xn drawn from a distribution that only takes positive values. Suppose that the sample size n is sufficiently large. Consider the new random variable ∏ n i=1 Xi . Derive the distribution of this new random variable and explain your reasoning mathematically
Suppose that we have a random sample X1, · · , Xn drawn from a distribution...
Suppose that we have a random sample X1, · · , Xn drawn from a distribution that only takes positive values. Suppose that the sample size n is sufficiently large. Consider the new random variable ∏ n i=1 Xi . Derive the distribution of this new random variable and explain your reasoning mathematically
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
Let X1,X2,...,Xn be a random sample from a geometric random variable with parameter p. What is...
Let X1,X2,...,Xn be a random sample from a geometric random variable with parameter p. What is the density function ofU = min({X1,X2,...,Xn})
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a...
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a distribution that is N(μ1, σ2 ) give ̄x = 4.8 and s 2+ 1 = 8.64 and a random sample, Y1, Y2, ..., Yn of size n = 10 from a distribution that is N(μ2, σ2 ) give y ̄ = 5.6 and s 2 2 = 7.88. Find a 95% confidence interval for μ1 − μ2.
Let X1, X2,...,Xn represent n random draws from a population with standard deviation σ and variance...
Let X1, X2,...,Xn represent n random draws from a population with standard deviation σ and variance σ^2 , so that V ar[X1] = V ar[X2] = ... = V ar[Xn] = σ^ 2 . Define the sample average taken from a sample of size n as follows: X¯ n ≡ (X1 + X2 + ... + Xn)/ n . a) Derive an expression for the standard deviation of X¯ n. [Hint: Your answer should depend only on σ and n]...
Let X1, X2, . . . , Xn be a random sample from a population following...
Let X1, X2, . . . , Xn be a random sample from a population following a uniform(0,2θ) (a) Show that if n is large, the distribution of Z =( X − θ) / ( θ/√ 3n) is approximately N(0, 1). (b) We can estimate θ by X(sample mean) and define W = (X − θ ) / (X/√ 3n) which is also approximately N(0, 1) for large n. Derive a (1 − α)100% confidence interval for θ based on...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...
Let X1,X2, . . . ,Xn be a random sample of size n from a geometric...
Let X1,X2, . . . ,Xn be a random sample of size n from a geometric distribution for which p is the probability of success. (a) Find the maximum likelihood estimator of p (don't use method of moment). (b) Explain intuitively why your estimate makes good sense. (c) Use the following data to give a point estimate of p: 3 34 7 4 19 2 1 19 43 2 22 4 19 11 7 1 2 21 15 16
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT