Question

A random variable X has the pdf given by fx(x) = cx^-3, x .> 2 with...

A random variable X has the pdf given by fx(x) = cx^-3, x .> 2 with a constant c. Find

a) the value of c

b) the probability P(3<X<5)

c) the mean E(X)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x <...
Let X be a random variable with pdf given by fX(x) = Cx2(1−x)1(0 < x < 1), where C > 0 and 1(·) is the indicator function. (a) Find the value of the constant C such that fX is a valid pdf. (b) Find P(1/2 ≤ X < 1). (c) Find P(X ≤ 1/2). (d) Find P(X = 1/2). (e) Find P(1 ≤ X ≤ 2). (f) Find EX.
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x <...
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x < −1, c(2−x), 1<x<2, 0, elsewhere (a) Find the value of c such that fX(x) is indeed a PDF. (b) Determine the CDF of X and sketch its graph. (c) Find P(X < 1.5). (d) Find m = π0.5 of X. Is it unique?
The random variable X has the PDF fX(x) = { 1/4 -3<=x<=1 { 0 otherwise If...
The random variable X has the PDF fX(x) = { 1/4 -3<=x<=1 { 0 otherwise If Y = (X - 2)^2 Find E|Y| Var|Y|
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
CDF of random variable X is given by: FX(x) = 0 x < -3 (x/2 +...
CDF of random variable X is given by: FX(x) = 0 x < -3 (x/2 + 3/2)   -3 < x < -2 (x/8 + ¾)      -2 < x < 2 1                      x > 2 Find the possible range of values that the random variable can take. Find E(X) = µX, the expected value Find P(X ≥ 1)
1. A random variable X has pdf fx(x) = c(x-1)      for 1 < x < 4....
1. A random variable X has pdf fx(x) = c(x-1)      for 1 < x < 4. a. find c. b. find the pdf of Y =  
a continuous random variable X has a pdf f(x) = cx, for 1<x<4, and zero otherwise....
a continuous random variable X has a pdf f(x) = cx, for 1<x<4, and zero otherwise. a. find c b. find F(x)
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
A random variable X has pdf as follows: ?(?) = ?? + .2 0 < ?...
A random variable X has pdf as follows: ?(?) = ?? + .2 0 < ? <5. PAY ATTENTION TO > and < signs! a. Find constant c so that f(x) becomes legitimate pdf. b. What is the mean of X? c. What is the 60th percentile of X?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT