Question

A simple random sample of size 20 is drawn from a population that is known to...

A simple random sample of size 20 is drawn from a population that is known to be normally distributed. The sample​ variance, s squared​, is determined to be 12.4. Construct a​ 90% confidence interval for sigma squared. The lower bound is nothing. ​(Round to two decimal places as​ needed.) The upper bound is nothing. ​(Round to two decimal places as​ needed.)

Homework Answers

Answer #1

df = n - 1 = 20 - 1 = 19

Chi-square critical values at 0.10 significance level with 19 df = L = 10.117 , U = 30.144

90% confidence interval for is

( n - 1) S2 / U < < ( n - 1) S2 / L

19 * 12.4 / 30.144 < < 19 * 12.4 / 10.117

7.82 < < 23.29

Lower bound = 7.82

Upper bound = 23.29

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample​ variance, s squared​, is determined to be 11.8. Complete parts​ (a) through​ (c). ​(a) Construct a​ 90% confidence interval for sigma squared if the sample​ size, n, is 20. The lower bound is nothing. ​(Round to two decimal places as​ needed.) The upper bound is nothing. ​(Round to two decimal places as​ needed.) ​ b) Construct a​ 90% confidence...
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample​ variance, s squared​, is determined to be 13.4. Complete parts​ (a) through​ (c). ​(a) Construct a​ 90% confidence interval for sigma squared if the sample​ size, n, is 20. The lower bound is nothing. ​(Round to two decimal places as​ needed.) The upper bound is nothing. ​(Round to two decimal places as​ needed.) ​(b) Construct a​ 90% confidence interval...
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample​ variance, s squareds2​, is determined to be 12.512.5. Complete parts​ (a) through​ (c). ​(a) Construct a​ 90% confidence interval for sigma squaredσ2 if the sample​ size, n, is 20.The lower bound is nothing. ​(Round to two decimal places as​ needed.)The upper bound is nothing. ​(Round to two decimal places as​ needed.)​(b) Construct a​ 90% confidence interval for sigma squaredσ2...
A simple random sample of size nequals=1717 is drawn from a population that is normally distributed....
A simple random sample of size nequals=1717 is drawn from a population that is normally distributed. The sample mean is found to be x overbar equals 65x=65 and the sample standard deviation is found to be sequals=1414. Construct a 9595​% confidence interval about the population mean. The lower bound is nothing. The upper bound is nothing. ​(Round to two decimal places as​ needed.)
A simple random sample of size n=13 is drawn from a population that is normally distributed....
A simple random sample of size n=13 is drawn from a population that is normally distributed. The sample mean is found to be x overbar equals 50 and the sample standard deviation is found to be s=12. Construct a 95​% confidence interval about the population mean. The lower bound is nothing. The upper bound is nothing. ​(Round to two decimal places as​ needed.).
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x​, is found to be 115​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct a 95​% confidence interval about μ if the sample​ size, n, is 22. ​(b) Construct a 95​% confidence interval about μ if the sample​ size, n, is 12. ​(c) Construct a 90​% confidence interval about μ if the sample​ size, n, is...
A simple random sample of size n equals 40 is drawn from a population. The sample...
A simple random sample of size n equals 40 is drawn from a population. The sample mean is found to be x overbar equals 121.4 and the sample standard deviation is found to be s equals 12.4. Construct a​ 99% confidence interval for the population mean. The lower bound is ?.​ (Round to two decimal places as​ needed.) The upper bound is ?. ​(Round to two decimal places as​ needed.)
A simple random sample of size n is drawn from a population that is normally distributed....
A simple random sample of size n is drawn from a population that is normally distributed. The sample​ mean, x overbar​, is found to be 105​, and the sample standard​ deviation, s, is found to be 10. ​(a) Construct a 90​% confidence interval about mu if the sample​ size, n, is 24. ​(b) Construct a 90​% confidence interval about mu if the sample​ size, n, is 20. ​(c) Construct an 80​% confidence interval about mu if the sample​ size, n,...
A simple random sample of size nequals24 is drawn from a population that is normally distributed....
A simple random sample of size nequals24 is drawn from a population that is normally distributed. The sample mean is found to be x overbar equals 58 and the sample standard deviation is found to be sequals10. Construct a 90​% confidence interval about the population mean. The 90​% confidence interval is ​( nothing​, nothing​). ​(Round to two decimal places as​ needed.)
A simple random sample of size n is drawn from a population that is known to...
A simple random sample of size n is drawn from a population that is known to be normally distributed. The sample variance is determined to be 20. a) Construct a 95% confidence interval for σ² if the sample size is 40. b) How does increasing the level of confidence affect the width of the confidence interval?