The following data show the daily closing prices (in dollars per share) for a stock.
Date | Price ($) |
Nov. 3 | 82.74 |
Nov. 4 | 82.18 |
Nov. 7 | 83.71 |
Nov. 8 | 83.88 |
Nov. 9 | 83.50 |
Nov. 10 | 82.48 |
Nov. 11 | 84.26 |
Nov. 14 | 84.76 |
Nov. 15 | 85.09 |
Nov. 16 | 86.56 |
Nov. 17 | 86.27 |
Nov. 18 | 87.47 |
Nov. 21 | 87.60 |
Nov. 22 | 87.57 |
Nov. 23 | 88.68 |
Nov. 25 | 88.77 |
Nov. 28 | 89.74 |
Nov. 29 | 89.89 |
Nov. 30 | 89.09 |
Dec. 1 | 88.34 |
a. Define the independent variable Period, where Period 1 corresponds to the data for November 3 , Period 2 corresponds to the data for November 4 , and so on. Develop the estimated regression equation that can be used to predict the closing price given the value of Period (to 3 decimals).
Price = (___) + (___) period
b. At the .05 level of significance, test for any positive autocorrelation in the data.
What is the value of the Durbin-Watson statistic (to 3 decimals)?
(a) Price = 81.781 + 0.414*Period
(b) The Durbin-Watson statistic = 1.172
r² | 0.911 | |||||
r | 0.954 | |||||
Std. Error | 0.789 | |||||
n | 20 | |||||
k | 1 | |||||
Dep. Var. | Price ($) | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 114.0280 | 1 | 114.0280 | 183.22 | 7.09E-11 | |
Residual | 11.2024 | 18 | 0.6224 | |||
Total | 125.2304 | 19 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=18) | p-value | 95% lower | 95% upper |
Intercept | 81.781 | |||||
Period | 0.414 | 0.0306 | 13.536 | 7.09E-11 | 0.3498 | 0.4784 |
Please give me a thumbs-up if this helps you out. Thank you!
Get Answers For Free
Most questions answered within 1 hours.