Question

let the density function of x be f(x) = e^−x, x>0, find of the density function...

let the density function of x be f(x) = e^−x, x>0, find of the density function of Z = e^-x

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let F(x) = 1 − e −2x for x > 0 and F(x) = 0 for...
Let F(x) = 1 − e −2x for x > 0 and F(x) = 0 for x ≤ 0. Is F(x) a distribution function? Explain your answer. If it is a distribution function, find its density function.
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
Let f(x,y)=1 for 0<x<1, 0<y<1 and 0 otherwise. Find the probability density function of Z=max(X, Y)
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent...
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent random variable following an identical distribution f(x):=e^(-x) if x>0, calculate the moment generating function of 2X+3Y b) If X follows a bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent, calculate the probability P(X+Y=3) and P(X=0|X+Y=3)
let X follow the probability density function f(x):=e^(-x) if x>0. For what value of k is...
let X follow the probability density function f(x):=e^(-x) if x>0. For what value of k is the probability that X is greater than k is at least 0.75
Let X be a random variable with density function f(x) = 2 5 x for x...
Let X be a random variable with density function f(x) = 2 5 x for x ∈ [2, 3] and f(x) = 0, otherwise. (a) (6 pts) Compute E[(X − 2)3 ] without attempting to find the density function of Y = (X − 2)3 . (b) (6 pts) Find the density function of Y = (X − 2)3
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
The probability density function of X is given by f(x)={a+bx0if 0<x<1otherwise If E(X)=1.5, find a+b. Hint:...
The probability density function of X is given by f(x)={a+bx0if 0<x<1otherwise If E(X)=1.5, find a+b. Hint: For a probability density function f(x), we have ∫∞−∞f(x)dx=1
The random variable X has a probability density function f(x) = e^(−x) for x > 0....
The random variable X has a probability density function f(x) = e^(−x) for x > 0. If a > 0 and A is the event that X > a, find f XIA (xlx > a), i.e. the density of the conditional distribution of X given that X > a.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT