Question

Suppose that Xi are IID normal random variables with mean 5 and variance 10, for i...

Suppose that Xi are IID normal random variables with mean 5 and variance 10, for i = 1, 2, ... , n.

(a) Calculate P(X1 < 6.2), i.e., the probability that the first value collected is less than 6.2.

(b) Suppose we collect a sample of size 2, X1 and X2. What is the probability that their sample mean is greater than 6.3?  

(c) Again, suppose we collect two samples (n=2), X1 and X2. What is the probability that their sum is greater than 11.4? (Hint: P(X1 + X2 > 11.4) = P( X > 5.7).

(d) Suppose we collect a sample size of n=100. What is the probability that the sample mean is between 4.53 and 5.32?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2 be two normal random variables each with population mean µ and population variance...
Let X1, X2 be two normal random variables each with population mean µ and population variance σ2. Let σ12 denote the covariance between X1 and X2 and let ¯ X denote the sample mean of X1 and X2. (a) List the condition that needs to be satisfied in order for ¯ X to be an unbiased estimate of µ. (b) [3] As carefully as you can, without skipping steps, show that both X1 and ¯ X are unbiased estimators of...
Suppose that X1,..., Xn∼iid Geometric(p). (a) Suppose that p has a uniform prior distribution on the...
Suppose that X1,..., Xn∼iid Geometric(p). (a) Suppose that p has a uniform prior distribution on the interval [0,1]. What is the posterior distribution of p? For part (b), assume that we obtained a random sample of size 4 with ∑ni=1 xi = 4. (b) What is the posterior mean? Median?
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) =...
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) = 7 and variance Var(Xi) = 9. Set Yn = X1 + X2 + · · · + Xn n (n = 1, 2, 3, . . .) (a) Find E(Y2) and E(Y5). (b) Find Cov(Y2, Y5). (c) Find E (Y2 | X1). (d) How should your answers from parts (a)–(c) be modified if the numbers “2”, “5”, “7” and “9” are replaced by m,...
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and...
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and variance Var(Xi) = σ2. Let V= X2−X3 and W = X1− 2X2 + X3. (a) Find E(V) and E(W). (b) Find Var(V) and Var(W). (c) Find Cov(V,W). (d) Find the correlation coefficient ρ(V,W). Are V and W independent?
X1,X2, . . . is a sequence of iid Bernoulli (1/2) random variables. Consider the random...
X1,X2, . . . is a sequence of iid Bernoulli (1/2) random variables. Consider the random sequence Y_n = X_1 +· · ·+X_n. (a) What is limn→∞ P[|Y_2n − n| ≤ (n/2)^1/2? (b) What does the weak law of large numbers say about Y2n? Could I get a little clarification with this problem?
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
Consider a large population which has population mean µ, and population variance σ 2 . We...
Consider a large population which has population mean µ, and population variance σ 2 . We take a sample of size n = 3 from this population, thinking of the samples as realizations of the RVs X1, X2, and X3, where the Xi can be considered iid. We are interested in estimating µ. (a) Consider the estimator ˆµ1 = X1 + X2 − X3. Is this estimator unbiased for µ? Explain your answer. (b) Find the variance of ˆµ1. (c)...
Question 7) Suppose X is a Normal random variable with with expected value 31 and standard...
Question 7) Suppose X is a Normal random variable with with expected value 31 and standard deviation 3.11. We take a random sample of size n from the distribution of X. Let X be the sample mean. Use R to determine the following: a) Find the probability P(X>32.1): b) Find the probability P(X >32.1) when n = 4: c) Find the probability P(X >32.1) when n = 25: d) What is the probability P(31.8 <X <32.5) when n = 25?...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean β. (1) Find the maximum likelihood estimator of β. (2) Determine whether the maximum likelihood estimator is unbiased for β. (3) Find the mean squared error of the maximum likelihood estimator of β. (4) Find the Cramer-Rao lower bound for the variances of unbiased estimators of β. (5) What is the UMVUE (uniformly minimum variance unbiased estimator) of β? What is your reason? (6)...
5. Consider a simple case with only four independently and identically distributed (iid) observations, X1, X2,...
5. Consider a simple case with only four independently and identically distributed (iid) observations, X1, X2, X3, X4, on a random variable X. Consider these two estimators: µˆ1 = 1/12 (2X1 + 4X2 + 4X3 + 2X4), µˆ2 = 1/12 (X1 + 5X2 + 5X3 + X4). a Show that each is unbiased, and that one is more efficient than the other. b Show that the usual sample mean is more efficient than either. Explain why the others given above...