Question

. Consider the Bernoulli distribution, P(X = x|p) = (p^x) (1 − p) ^(1−x) for x...

. Consider the Bernoulli distribution, P(X = x|p) = (p^x) (1 − p) ^(1−x) for x = 0 and x = 1.

(a) Show that this is an exponential family.

(b) Find a sufficient statistic for p.

(c) Show that X is a m.v.u.e. for p.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(1) Consider X that follows the Bernoulli distribution with success probability 1/4, that is, P(X =...
(1) Consider X that follows the Bernoulli distribution with success probability 1/4, that is, P(X = 1) = 1/4 and P(X = 0) = 3/4. Find the probability mass function of Y , when Y = X4 . Find the second moment of Y . (2) If X ∼ binomial(10, 1/2), then use the binomial probability table (Table A.1 in the textbook) to find out the following probabilities: P(X = 5), P(2.9 ≤ X ≤ 4.9) (3) A deck of...
The geometric distribution with parameter p represents the number of failures in a sequence of independent...
The geometric distribution with parameter p represents the number of failures in a sequence of independent Bernoulli trials before a success occurs. Show that this distribution is of the exponential family.
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0...
(1 point) A Bernoulli differential equation is one of the form dydx+P(x)y=Q(x)yn     (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y1−n transforms the Bernoulli equation into the linear equation dudx+(1−n)P(x)u=(1−n)Q(x).dudx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem y′=−y(1+9xy3),   y(0)=−3. (a) This differential equation can be written in the form (∗) with P(x)= , Q(x)= , and n=. (b) The substitution u= will transform it into the linear equation dudx+ u= . (c) Using...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower...
Let X_1,…, X_n  be a random sample from the Bernoulli distribution, say P[X=1]=θ=1-P[X=0]. and Cramer Rao Lower Bound of θ(1-θ) =((1-2θ)^2 θ(1-θ))/n Find the UMVUE of θ(1-θ) if such exists. can you proof [part (b) ] using (Leehmann Scheffe Theorem step by step solution) to proof [∑X1-nXbar^2 ]/(n-1) is the umvue , I have the key solution below x is complete and sufficient. S^2=∑ [X1-Xbar ]^2/(n-1) is unbiased estimator of θ(1-θ) since the sample variance is an unbiased estimator of the...
Let X1, . . . , X10 be iid Bernoulli(p), and let the prior distribution of...
Let X1, . . . , X10 be iid Bernoulli(p), and let the prior distribution of p be uniform [0, 1]. Find the Bayesian estimator of p given X1, . . . , X10, assuming a mean square loss function.
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or...
A Bernoulli differential equation is one of the form dy/dx+P(x)y=Q(x)y^n (∗) Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x). Consider the initial value problem xy′+y=−8xy^2, y(1)=−1. (a) This differential equation can be written in the form (∗) with P(x)=_____, Q(x)=_____, and n=_____. (b) The substitution u=_____ will transform it into the linear equation du/dx+______u=_____. (c) Using the substitution in part...
Consider the family of distributions with pmf pX(x) = p if x = −1, 2p if...
Consider the family of distributions with pmf pX(x) = p if x = −1, 2p if x = 0, 1 − 3p if x = 1 . Here p is an unknown parameter, and 0 ≤ p ≤ 1/3. Let X1, X2, . . . , Xn be iid with common pmf a member of this family. Consider the statistics A = the number of i with Xi = −1, B = the number of i with Xi = 0,...
A Bernoulli differential equation is one of the form dxdy+P(x)y=Q(x)yn Observe that, if n=0 or 1,...
A Bernoulli differential equation is one of the form dxdy+P(x)y=Q(x)yn Observe that, if n=0 or 1, the Bernoulli equation is linear. For other values of n, the substitution u=y^(1−n) transforms the Bernoulli equation into the linear equation du/dx+(1−n)P(x)u=(1−n)Q(x) Use an appropriate substitution to solve the equation y'−(3/x)y=y^4/x^2 and find the solution that satisfies y(1)=1
Consider a random variable X with the following probability distribution: P(X=0) = 0.08, P(X=1) = 0.22,...
Consider a random variable X with the following probability distribution: P(X=0) = 0.08, P(X=1) = 0.22, P(X=2) = 0.25, P(X=3) = 0.25, P(X=4) = 0.15, P(X=5) = 0.05 Find the expected value of X and the standard deviation of X.
Consider the probability distribution shown below. x 0 1 2 P(x) 0.05 0.50 0.45 Compute the...
Consider the probability distribution shown below. x 0 1 2 P(x) 0.05 0.50 0.45 Compute the expected value of the distribution. Consider a binomial experiment with n = 7 trials where the probability of success on a single trial is p = 0.10. (Round your answers to three decimal places.) (a) Find P(r = 0). (b) Find P(r ≥ 1) by using the complement rule. Compute the standard deviation of the distribution. (Round your answer to four decimal places.) A...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT