Question

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a 12
hour fast. Assume that for people under 50 years old, x has a
distribution that is approximately normal, with mean μ = 60 and
estimated standard deviation σ = 46. A test result x < 40 is an
indication of severe excess insulin, and medication is usually
prescribed.

(a) What is the probability that, on a single test, x < 40?
(Round your answer to four decimal places.)

(b) Suppose a doctor uses the average x for two tests taken
about a week apart. What can we say about the probability
distribution of x? Hint: See Theorem 6.1.

The probability distribution of x is approximately normal with
μx = 60 and σx = 46.

The probability distribution of x is not normal.

The probability distribution of x is approximately normal with
μx = 60 and σx = 32.53.

The probability distribution of x is approximately normal with
μx = 60 and σx = 23.00.

What is the probability that x < 40? (Round your answer to
four decimal places.)

(c) Repeat part (b) for n = 3 tests taken a week apart. (Round
your answer to four decimal places.)

(d) Repeat part (b) for n = 5 tests taken a week apart. (Round
your answer to four decimal places.)

(e) Compare your answers to parts (a), (b), (c), and (d). Did
the probabilities decrease as n increased?

Yes

No

Explain what this might imply if you were a doctor or a
nurse.

The more tests a patient completes, the stronger is the
evidence for excess insulin.

The more tests a patient completes, the stronger is the
evidence for lack of insulin.

The more tests a patient completes, the weaker is the evidence
for lack of insulin.

The more tests a patient completes, the weaker is the evidence
for excess insulin.

Answer #1

Let x be a random variable that represents the level of glucose
in the blood (milligrams per deciliter of blood) after a 12 hour
fast. Assume that for people under 50 years old, x has a
distribution that is approximately normal, with mean μ = 60 and
estimated standard deviation σ = 44. A test result x < 40 is an
indication of severe excess insulin, and medication is usually
prescribed. (a) What is the probability that, on a single...

Let x be a random variable that represents the level of glucose
in the blood (milligrams per deciliter of blood) after a 12 hour
fast. Assume that for people under 50 years old, x has a
distribution that is approximately normal, with mean μ = 79 and
estimated standard deviation σ = 32. A test result x < 40 is an
indication of severe excess insulin, and medication is usually
prescribed. (a) What is the probability that, on a single...

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a 12
hour fast. Assume that for people under 50 years old, x
has a distribution that is approximately normal, with mean
μ = 56 and estimated standard deviation σ = 42. A
test result x < 40 is an indication of severe excess
insulin, and medication is usually prescribed.
(a) What is the probability that, on a single...

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a
12-hour fast. Assume that for people under 50 years old, x
has a distribution that is approximately normal, with mean
μ = 92 and estimated standard deviation σ = 40. A
test result x < 40 is an indication of severe excess
insulin, and medication is usually prescribed.
(a) What is the probability that, on a single test,...

Let x be a random variable that represents the level of glucose
in the blood (milligrams per deciliter of blood) after a 12 hour
fast. Assume that for people under 50 years old, x has a
distribution that is approximately normal, with mean μ = 62 and
estimated standard deviation σ = 31. A test result x < 40 is an
indication of severe excess insulin, and medication is usually
prescribed.
(a) What is the probability that, on a single...

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a 12
hour fast. Assume that for people under 50 years old, x
has a distribution that is approximately normal, with mean
μ = 90and estimated standard deviation σ = 49. A
test result x < 40 is an indication of severe excess
insulin, and medication is usually prescribed.
(a) What is the probability that, on a single test,...

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a
12-hour fast. Assume that for people under 50 years old, x
has a distribution that is approximately normal, with mean
μ = 78 and estimated standard deviation σ = 45. A
test result x < 40 is an indication of severe excess
insulin, and medication is usually prescribed.
(a) What is the probability that, on a single test,...

Let x be a random variable that represents the level of glucose
in the blood (milligrams per deciliter of blood) after a 12 hour
fast. Assume that for people under 50 years old, x has a
distribution that is approximately normal, with mean μ = 94 and
estimated standard deviation σ = 40. A test result x < 40 is an
indication of severe excess insulin, and medication is usually
prescribed.
(a) What is the probability that, on a single...

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a 12
hour fast. Assume that for people under 50 years old, x
has a distribution that is approximately normal, with mean
? = 59 and estimated standard deviation ? = 45. A
test result x < 40 is an indication of severe excess
insulin, and medication is usually prescribed.
(a) What is the probability that, on a single...

Let x be a random variable that represents the level of
glucose in the blood (milligrams per deciliter of blood) after a
12-hour fast. Assume that for people under 50 years old, x
has a distribution that is approximately normal, with mean
μ = 57 and estimated standard deviation σ = 34. A
test result x < 40 is an indication of severe excess
insulin, and medication is usually prescribed.
(a) What is the probability that, on a single test,...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 4 minutes ago

asked 15 minutes ago

asked 20 minutes ago

asked 24 minutes ago

asked 39 minutes ago

asked 52 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 3 hours ago