Question

Exercise 3: 1. The pH, a measure of the acidity of water, is important in studies...


Exercise 3:
1. The pH, a measure of the acidity of water, is important in studies of acid
rain. For Lake Ontario, baseline measurements on acidity are made so any
changes caused by acid rain can be noted. The pH of water samples from
Lake Ontario is a random variable X with probability density function:
f(x) =
8><
>:
cx, 0 x < 1
c(2 − x), 1 x 2
0, elsewhere
(a) Find the value of c that makes this a probability density function.
(b) Find the cumulative distribution function of X.
(c) What is the probability that X falls between 1/2 and 3/2?.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The c.d.f of the lifetime pH of water samples from a specific lake is a random...
The c.d.f of the lifetime pH of water samples from a specific lake is a random variable X with probability density function: F(x) = (1 − (16 /x^2)) if x ≥ 4 and 0 elsewhere 1. Find the p.d.f of X. 2. Find P(7 ≤ X ≤ 10).
The pH factor is a measure of the acidity or alkalinity of water. A reading of...
The pH factor is a measure of the acidity or alkalinity of water. A reading of 7.0 is neutral; values in excess of 7.0 indicate alkalinity; those below 7.0 imply acidity. Loren Hill states that the best chance of catching bass occurs when the pH of the water is in the range 7.5 to 7.9. Suppose you suspect that acid rain is lowering the pH of your favorite fishing spot and you wish to determine whether the pH is less...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5...
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5 0 1 < x < infinity elsewhere 2. The probability density function of X is f(x). F(1.5)=___________ f(x) = {(1/2)x^3 - (3/8)x^2 0 0 < x < 2 elsewhere   3. F(x) is the distribution function of X. Find the probability density function of X. Give your answer as a piecewise function. F(x) = {3x^2 - 2x^3 0 0<x<1 elsewhere
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function...
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function 2. Decide if f(x) = 1/81x3dx on the interval [0, 3] is a probability density function. 3. Find a value for k such that f(x) = kx on the interval [2, 3] is a probability density function. 4. Let f(x) = 1 /2 e -x/2 on the interval [0, ∞). a. Show that f(x) is a probability density function b. . Find P(0 ≤...
For each of the random quantities X,Y, and Z, defined below (a) Plot the probability mass...
For each of the random quantities X,Y, and Z, defined below (a) Plot the probability mass function PMS (in the discrete case) , or the probability density function PDF (in the continuous case) (b) Calculate and plot the cumulative distribution function CDF (c) Calculate the mean and variance, and the moment function m(n), and plot the latter. The random quantities are as follows: X is a discrete r.q. taking values k=0,1,2,3,... with probabilities p(1-p)^k, where p is a parameter with...
Consider the joint density function f (x, y) = 1 if 0<= x<= 1; 0<=y<= 1....
Consider the joint density function f (x, y) = 1 if 0<= x<= 1; 0<=y<= 1. [0 elsewhere] a) Obtain the probability density function of the v.a Z, where Z = X^2. b) Obtain the probability density function of v.a W, where W = X*Y^2. c) Obtain the joint density function of Z and W, that is, g (Z, W)
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
QUESTION 1: Emissions of sulfur dioxide by industry set off chemical changes in the atmosphere that...
QUESTION 1: Emissions of sulfur dioxide by industry set off chemical changes in the atmosphere that result in "acid rain." The acidity of liquids is measured by pH on a scale of 0 to 14. Distilled water has pH 7.0, and lower pH values indicate acidity. Normal rain is somewhat acidic, so acid rain is sometimes defined as rainfall with a pH below 5.0. Suppose that pH measurements of rainfall on different days in a Canadian forest follow a Normal...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT