Question

Suppose that a random sample of size 64 is to be selected from a population with...

Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5.

(a) What are the mean and standard deviation of the sampling distribution?
μx =
σx =

(b) What is the approximate probability that x will be within 0.4 of the population mean μ? (Round your answer to four decimal places.)
P =

(c) What is the approximate probability that x will differ from μ by more than 0.8? (Round your answer to four decimal places.)
P =

Homework Answers

Answer #1

Please rate, If it is really helps you. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that a random sample of size 64 is to be selected from a population with...
Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5. (a) What is the mean of the xbar sampling distribution? 40 What is the standard deviation of the xbar sampling distribution? .625 (b) What is the approximate probability that xbar will be within 0.5 of the population mean μ ? (c) What is the approximate probability that xbar will differ from μ by more than 0.7?
Suppose that a random sample of size 64 is to be selected from a population with...
Suppose that a random sample of size 64 is to be selected from a population with mean 40 and standard deviation 5. (a) What is the mean of the xbar sampling distribution? =40 What is the standard deviation of the xbar sampling distribution (to 3 decimal places)? =0.625 For parts b & c round to 4 decimal places: (b) What is the probability that xbar will be within 0.5 of the population mean μ ? (c) What is the probability...
Suppose a random sample of n = 16 observations is selected from a population that is...
Suppose a random sample of n = 16 observations is selected from a population that is normally distributed with mean equal to 102 and standard deviation equal to 10. a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean = standard deviation = b) Find the probability that x exceeds 106. (Round your answer to four decimal places.) c) Find the probability that the sample mean deviates from the population mean μ...
Suppose a random sample of n = 25 observations is selected from a population that is...
Suppose a random sample of n = 25 observations is selected from a population that is normally distributed with mean equal to 108 and standard deviation equal to 14. (a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean     standard deviation     (b) Find the probability that x exceeds 113. (Round your answer to four decimal places.) (c) Find the probability that the sample mean deviates from the population mean ? = 108...
A random sample is selected from a population with mean μ = 100 and standard deviation...
A random sample is selected from a population with mean μ = 100 and standard deviation σ = 10. Determine the mean and standard deviation of the x sampling distribution for each of the following sample sizes. (Round the answers to three decimal places.) (a) n = 8 μ = σ = (b) n = 14 μ = σ = (c) n = 34 μ = σ = (d) n = 55 μ = σ = (f) n = 110...
A random sample of n = 25 is selected from a normal population with mean μ...
A random sample of n = 25 is selected from a normal population with mean μ = 101 and standard deviation σ = 13. (a) Find the probability that x exceeds 108. (Round your answer to four decimal places.) (b) Find the probability that the sample mean deviates from the population mean μ = 101 by no more than 3. (Round your answer to four decimal places.)
A random sample of n = 25 is selected from a normal population with mean μ...
A random sample of n = 25 is selected from a normal population with mean μ = 102 and standard deviation σ = 11. (a) Find the probability that x exceeds 107. (Round your answer to four decimal places.) (b) Find the probability that the sample mean deviates from the population mean μ = 102 by no more than 2. (Round your answer to four decimal places.) You may need to use the appropriate appendix table or technology to answer...
Suppose a simple random sample of size n=200 is obtained from a population whose size is...
Suppose a simple random sample of size n=200 is obtained from a population whose size is N=10,000 and whose population proportion with a specified characteristic is p=0.6. Complete parts ​(a) through​ (c) below. (a) Describe the sampling distribution of ModifyingAbove p with caretp. Determine the mean of the sampling distribution of ModifyingAbove p with caretp. mu Subscript ModifyingAbove p with caret equals μp=___ ​(Round to one decimal place as​ needed.) Determine the standard deviation of the sampling distribution of sigma...
Suppose a simple random sample of size n is obtained from a population whose size is...
Suppose a simple random sample of size n is obtained from a population whose size is N and whose population proportion with a specified characteristic is Complete parts (a) through (c) below. = 1000 = 2,000,000 p = 0.25. Click here to view the standard normal distribution table (page 1).7 Click here to view the standard normal distribution table (page 2).8 (a) Describe the sampling distribution of p. A. Approximately normal, μ and p = 0.25 σ p ≈ 0.0137...
11. Random samples of size n = 80 were selected from a binomial population with p...
11. Random samples of size n = 80 were selected from a binomial population with p = 0.2. Use the normal distribution to approximate the following probability. (Round your answer to four decimal places.) P(p̂ ≤ 0.26) 12. Random samples of size n = 80 were selected from a binomial population with p = 0.8. Use the normal distribution to approximate the following probability. (Round your answer to four decimal places.) P(p̂ > 0.79)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT