Question 2
A supply chain analyst is analyzing past sales data. He obtained the following numbers:
Week |
Demand |
1 |
2200 |
2 |
2100 |
3 |
2050 |
4 |
2120 |
5 |
2550 |
6 |
2340 |
7 |
2400 |
8 |
2370 |
9 |
2290 |
10 |
2020 |
11 |
2110 |
12 |
2105 |
13 |
2340 |
14 |
2410 |
15 |
2560 |
He thinks that three methods could be used to forecast future sales: 4-weeks simple moving average, linear regression and weighted moving average.
2.1 Using Excel, please run linear regression on this data. Based on the results you obtain, do you think that linear regression is appropriate in this case? Why?
2.2 For the weighted moving average, the analyst wants to calculate a four-month weighted moving average with weights 0.4 for the most recent month, 0.3 for 2 months ago, 0.2 for 3 months ago and 0.1 for 4 months ago. Please apply the weighted moving average method to calculate the sales forecast in weeks 5-15.
2.3 For the simple moving average, the analyst wants to calculate a four-month simple moving average, Please apply the simple moving average methods to calculate the sales forecast in weeks 5-15.
2.1)linear regression
Excel > Data > Data Analysis > Regression
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.333823913 | |||||||
R Square | 0.111438405 | |||||||
Adjusted R Square | 0.043087513 | |||||||
Standard Error | 173.1718746 | |||||||
Observations | 15 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 48892.85714 | 48892.85714 | 1.630386986 | 0.223986121 | |||
Residual | 13 | 389850.4762 | 29988.49817 | |||||
Total | 14 | 438743.3333 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 2158.619048 | 94.094352 | 22.94100551 | 6.68342E-12 | 1955.340559 | 2361.897536 | 1955.340559 | 2361.897536 |
Week | 13.21428571 | 10.34899895 | 1.27686608 | 0.223986121 | -9.143367233 | 35.57193866 | -9.143367233 | 35.57193866 |
Demand = 2158.619 + 13.2143 * week
If week = 16,
Demand = 2158.619 + 13.2143 * 16 = 2370.048
MSE = 29988.498
R^2 = 0.1114
Adjusted R Square = 0.043, nearer to 0 which means worst fit
2.2)weighted moving average
Forecast = (Y1*0.1+Y2*0.2+Y3*0.3+Y4*0.4)/0.1+0.2+0.3+0.4
Week | Demand(Y) | Forecast(Y^) | e = Y-Y^ | Abs erro = |Y-Y^| | e^2 | Abs % = Abs error/Demand |
1 | 2200 | |||||
2 | 2100 | |||||
3 | 2050 | |||||
4 | 2120 | |||||
5 | 2550 | 2103 | 447 | 447 | 199809 | 0.175294118 |
6 | 2340 | 2276 | 64 | 64 | 4096 | 0.027350427 |
7 | 2400 | 2330 | 70 | 70 | 4900 | 0.029166667 |
8 | 2370 | 2384 | -14 | 14 | 196 | 0.005907173 |
9 | 2290 | 2391 | -101 | 101 | 10201 | 0.044104803 |
10 | 2020 | 2341 | -321 | 321 | 103041 | 0.158910891 |
11 | 2110 | 2209 | -99 | 99 | 9801 | 0.046919431 |
12 | 2105 | 2145 | -40 | 40 | 1600 | 0.019002375 |
13 | 2340 | 2108 | 232 | 232 | 53824 | 0.099145299 |
14 | 2410 | 2191.5 | 218.5 | 218.5 | 47742.25 | 0.0906639 |
15 | 2560 | 2298 | 262 | 262 | 68644 | 0.10234375 |
Average | 169.8636364 | 45804.93 | 0.072618985 | |||
Weights | 0.1 | |||||
0.2 | ||||||
0.3 | ||||||
0.4 |
MAD=169.86
MSE=45804.93
MAPE=7.26%
2.3)simple moving average
Week | Demand(Y) | Forecast(Y^) | e = Y-Y^ | Abs error = |e| | e^2 | Abs % = Abs error/Demand |
1 | 2200 | |||||
2 | 2100 | |||||
3 | 2050 | |||||
4 | 2120 | |||||
5 | 2550 | 2117.5 | 432.5 | 432.5 | 187056.3 | 0.169607843 |
6 | 2340 | 2205 | 135 | 135 | 18225 | 0.057692308 |
7 | 2400 | 2265 | 135 | 135 | 18225 | 0.05625 |
8 | 2370 | 2352.5 | 17.5 | 17.5 | 306.25 | 0.007383966 |
9 | 2290 | 2415 | -125 | 125 | 15625 | 0.054585153 |
10 | 2020 | 2350 | -330 | 330 | 108900 | 0.163366337 |
11 | 2110 | 2270 | -160 | 160 | 25600 | 0.075829384 |
12 | 2105 | 2197.5 | -92.5 | 92.5 | 8556.25 | 0.043942993 |
13 | 2340 | 2131.25 | 208.75 | 208.75 | 43576.56 | 0.089209402 |
14 | 2410 | 2143.75 | 266.25 | 266.25 | 70889.06 | 0.110477178 |
15 | 2560 | 2241.25 | 318.75 | 318.75 | 101601.6 | 0.124511719 |
Average | 201.9318182 | 54414.63 | 0.086623298 |
MAD=201.93
MSE=54414.63
MAPE=8.66%
MAD of weighted moving average < MAD of simple moving average
MSE of weighted moving average < MSE of simple moving average
SO, prefer weighted moving average and it is more effective
Get Answers For Free
Most questions answered within 1 hours.