Question

Let random variable X denote the time (in years) it takes to develop a software. Suppose...

Let random variable X denote the time (in years) it takes to develop a software. Suppose that X has the following probability density function: f(x)= 5??4 if 0 ≤ x ≤ 1, and 0 otherwise. b. Write the CDF of the time it takes to develop a software. d. Compute the variance of the number of years it takes to develop a software.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let the probability density function of the random variable X be f(x) = { e ^2x...
Let the probability density function of the random variable X be f(x) = { e ^2x if x ≤ 0 ;1 /x ^2 if x ≥ 2 ; 0 otherwise} Find the cumulative distribution function (cdf) of X.
1. Let the random variable X denote the time (in hours) required to upgrade a computer...
1. Let the random variable X denote the time (in hours) required to upgrade a computer system. Assume that the probability density function for X is given by: p(x) = Ce^-2x for 0 < x < infinity (and p(x) = 0 otherwise). a) Find the numerical value of C that makes this a valid probability density function. b) Find the probability that it will take at most 45 minutes to upgrade a given system. c) Use the definition of the...
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf)...
Suppose a random variable X has cumulative distribution function (cdf) F and probability density function (pdf) f. Consider the random variable Y = X?b a for a > 0 and real b. (a) Let G(x) = P(Y x) denote the cdf of Y . What is the relationship between the functions G and F? Explain your answer clearly. (b) Let g(x) denote the pdf of Y . How are the two functions f and g related? Note: Here, Y is...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤ x < ∞ 0 otherwise } for some λ > 0. a. Compute the cumulative distribution function F(x), where F(x) = Prob(X < x) viewed as a function of x. b. The α-percentile of a random variable is the number mα such that F(mα) = α, where α ∈ (0, 1). Compute the α-percentile of the random variable X. The value of mα will...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x),...
Let X be a random variable with the probability density function fx(x) given by: fx(x)= 1/4(2-x), 0<x<2 1/4(x-2), 2<=x<4 0, otherwise. Let Y=|X-3|. Compute the probability density function of Y.
A random variable X takes values between -2 and 4 with probability density function (pdf) Sketch...
A random variable X takes values between -2 and 4 with probability density function (pdf) Sketch a graph of the pdf. Construct the cumulative density function (cdf). Using the cdf, find ) Using the pdf, find E(X) Using the pdf, find the variance of X Using either the pdf or the cdf, find the median of X
Let X denote the amount of time a book on two-hour reserve is actually checked out,...
Let X denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is F(x) = 0           x < 0 F(x) = x2/4       0 ≤ x < 2 F(x) = 1           2 ≤ x Use the cdf to obtain the following a) P[ X ≤ 1 ] b) P[ 0.5 ≤ X ≤ 1 ] c) P[ X > 1.5 ] d) Expected value of X, E[X] e) Variance of X, Var[X]
Let X denote the amount of time a book on two-hour reserve is actually checked out,...
Let X denote the amount of time a book on two-hour reserve is actually checked out, and suppose the cdf is the following. F(x) = 0      x < 0 x2 16 0 ≤ x < 4 1 4 ≤ x Use the cdf to obtain the following. (If necessary, round your answer to four decimal places.) (a) Calculate P(X ≤ 2). (b) Calculate P(1.5 ≤ X ≤ 2). (c) Calculate P(X > 2.5). (d) What is the median checkout...