Question

The distribution of scores on a standardized aptitude test is approximately normal with a mean of...

The distribution of scores on a standardized aptitude test is approximately normal with a mean of 500 and a standard deviation of 95 What is the minimum score needed to be in the top 20%

on this test? Carry your intermediate computations to at least four decimal places, and round your answer to the nearest integer.

Homework Answers

Answer #1

Given that, mean (μ) = 500 and standard deviation = 95

We want to find, the value of x such that, P(X > x) = 0.20

Therefore, the minimum score needed to be in the top 20% is 580

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The distribution of math test scores on a standardized test administered to Texas tenth-graders is approximately...
The distribution of math test scores on a standardized test administered to Texas tenth-graders is approximately Normal with a mean of 615 and a standard deviation of 46. Below what score do the worst 2.5% of the scores fall? (Hint: apply the 68-95-99.7 Rule.) Round your answer to the nearest integer.
Suppose that scores on a particular test are normally distributed with a mean of 110 and...
Suppose that scores on a particular test are normally distributed with a mean of 110 and a standard deviation of 19 . What is the minimum score needed to be in the top 15% of the scores on the test? Carry your intermediate computations to at least four decimal places, and round your answer to one decimal place.
Scores on an aptitude test are approximately normal with a mean of 100 and a standard...
Scores on an aptitude test are approximately normal with a mean of 100 and a standard deviation of 20. A particular test-taker scored 125.6. What is the PERCENTILE rank of this test-taker's score? A. 50th percentile. B. 10th percentile. C. 90th percentile. D. 95th percentile E. None of the above. The proportion of z-scores from a normal distribution that are LARGER THAN z = -0.74 is A. 0.23 B. 0.38 C. 0.80 D. 0.77 E. None of the above. (c)...
Scores on an aptitude test have been observed to be approximately normal with a mean of...
Scores on an aptitude test have been observed to be approximately normal with a mean of 76and a standard deviation of 5. If 1000 people took the test, how many would you expect to score above 80?
1. Scores on an aptitude test form a normal distribution with a mean of 140 and...
1. Scores on an aptitude test form a normal distribution with a mean of 140 and a standard deviaition of 12. Find the percent that score between 131 and 155. Group of answer choices 12.10% 22.66% 32.44% 66.78% 10.56% 2. The scores of students on a standardized test form a normal distribution with a mean of 140 and a standard deviaition of 12. If 36000 students took the test, how many scored above 149? Group of answer choices 9634 7922...
Scores for a common standardized college aptitude test are normally distributed with a mean of 499...
Scores for a common standardized college aptitude test are normally distributed with a mean of 499 and a standard deviation of 97. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 557.2. P(X > 557.2) = Enter your answer as a number accurate to 4 decimal places. NOTE:...
Scores for a common standardized college aptitude test are normally distributed with a mean of 483...
Scores for a common standardized college aptitude test are normally distributed with a mean of 483 and a standard deviation of 101. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 550.8. P(X > 550.8) = Enter your answer as a number accurate to 4 decimal places. NOTE:...
Suppose the scores on an IQ test approximately follow a normal distribution with mean 100 and...
Suppose the scores on an IQ test approximately follow a normal distribution with mean 100 and standard deviation 12. Use the 68-95-99.7 Rule to determine approximately what percentage of the population will score between 100 and 124.
The scores on an examination in finance are approximately normally distributed with mean 500 and an...
The scores on an examination in finance are approximately normally distributed with mean 500 and an unknown standard deviation. The following is a random sample of scores from this examination. 447, 458, 492, 519, 571, 593, 617 Find a 95% confidence interval for the population standard deviation. Then complete the table below. Carry your intermediate computations to at least three decimal places. Round your answers to at least two decimal places.
Scores for a common standardized college aptitude test are normally distributed with a mean of 492...
Scores for a common standardized college aptitude test are normally distributed with a mean of 492 and a standard deviation of 100. Randomly selected men are given a Test Prepartion Course before taking this test. Assume, for sake of argument, that the test has no effect. If 1 of the men is randomly selected, find the probability that his score is at least 533.3. P(X > 533.3) = ? Enter your answer as a number accurate to 4 decimal places....