Question

You are interested in the effects of time spent viewing television and Body Mass Index on...

You are interested in the effects of time spent viewing television and Body Mass Index on cardiovascular fitness (CVF) in children. You have a sample of 60 middle school students. Each student reports on their average daily T.V. viewing (in hours). You also have a Body Mass Index (BMI) score for each of these individuals. As a measure of CVF, your dependent variable is their score on the PACER run (Progressive Aerobic Cardiovascular Endurance Run), a well-accepted measure of cardiovascular fitness in children. A higher PACER score (more completed laps) indicates better cardiovascular fitness (CVF). The results from your sample are below. Enter these data into SPSS and answer the following questions:

TV Time     BMI           PACER

1.00    19.00   30.00

1.00    18.00   30.00

1.00    20.00   29.00

1.00    19.00   28.00

1.00    20.00   26.00

1.00    19.00   25.00

1.00    18.00   25.00

1.00    20.00   22.00

1.00    21.00   23.00

1.00    25.00   18.00

1.00    23.00   21.00

1.00    22.00   20.00

1.00    27.00   15.00

1.00    26.00   17.00

1.00    21.00   22.00

2.00    18.00   25.00

2.00    19.00   24.00

2.00    25.00   18.00

2.00    27.00   14.00

2.00    28.00   14.00

2.00    26.00   15.00

2.00    24.00   18.00

2.00    25.00   16.00

2.00    20.00   21.00

2.00    22.00   20.00

2.00    18.00   25.00

2.00    19.00   26.00

2.00    18.00   24.00

2.00    22.00   20.00

2.00    21.00   22.00

3.00    28.00   12.00

3.00    29.00   11.00

3.00    30.00   10.00

3.00    28.00   11.00

3.00    26.00   12.00

3.00    25.00   13.00

3.00    22.00   20.00

3.00    18.00   25.00

3.00    19.00   21.00

3.00    19.00   26.00

3.00    20.00   25.00

3.00    27.00   9.00

3.00    26.00   11.00

3.00    21.00   21.00

3.00    20.00   22.00

4.00    31.00   9.00

4.00    20.00   23.00

4.00    20.00   22.00

4.00    23.00   21.00

4.00    22.00   20.00

4.00    24.00   18.00

4.00    31.00   12.00

4.00    30.00   11.00

4.00    29.00   14.00

4.00    28.00   15.00

4.00    27.00   17.00

4.00    29.00   13.00

4.00    31.00   10.00

4.00    22.00   21.00

4.00    24.00   18.00

1.    Are there problems with collinearity/multicolinearity? How do you know? Present evidence of all three criteria discussed in lecture.

There are no problems with collinearity. We know that because

1. The two predictor variables are correlated <.8

2. The VIF <10

3. tolerance >.1

Give SPSS screenshots of output and give the SPSS codes and paths how to get the answers

Homework Answers

Answer #1

Solution:

Multicollineraity Dignostics: Regression

Model Summaryb

Model

R

R Square

Adjusted R Square

Std. Error of the Estimate

Change Statistics

Durbin-Watson

R Square Change

F Change

df1

df2

Sig. F Change

1

.933a

.870

.866

2.091

.870

191.434

2

57

.000

.847

a. Predictors: (Constant), BMI, TVTime

b. Dependent Variable: PACER

ANOVAb

Model

Sum of Squares

df

Mean Square

F

Sig.

1

Regression

1674.158

2

837.079

191.434

.000a

Residual

249.242

57

4.373

Total

1923.400

59

a. Predictors: (Constant), BMI, TVTime

b. Dependent Variable: PACER

Coefficientsa

Model

Unstandardized Coefficients

Standardized Coefficients

t

Sig.

95% Confidence Interval for B

Collinearity Statistics

B

Std. Error

Beta

Lower Bound

Upper Bound

Tolerance

VIF

1

(Constant)

49.471

1.596

31.002

.000

46.276

52.667

TVTime

-.443

.271

-.088

-1.636

.107

-.986

.099

.793

1.261

BMI

-1.255

.076

-.890

-16.620

.000

-1.406

-1.104

.793

1.261

  1. Dependent Variable: PACER

Collinearity Diagnosticsa

Model

Dimension

Eigenvalue

Condition Index

Variance Proportions

(Constant)

TVTime

BMI

1

1

2.887

1.000

.00

.01

.00

2

.100

5.369

.07

.88

.02

3

.013

14.809

.93

.11

.98

a. Dependent Variable: PACER

Residuals Statisticsa

Minimum

Maximum

Mean

Std. Deviation

N

Predicted Value

8.79

26.44

19.10

5.327

60

Residual

-5.256

5.072

.000

2.055

60

Std. Predicted Value

-1.935

1.377

.000

1.000

60

Std. Residual

-2.513

2.426

.000

.983

60

a. Dependent Variable: PACER

RESULTS: 1. From the table of Coefficientsa we observed that VIF < 10 and tolerance >0.1 there for ther is no presence of multicollinearity in data.

               2. Also the correlation between predictor variable is 0.4548 < 0.8 which provide the information that there is no presence of multiollinearity.

               3. PATH: input the data on spss spread sheet / import

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A student is given a buffer that contains [HA] and [A- ]. The student is...
1. A student is given a buffer that contains [HA] and [A- ]. The student is given the concentration of [HA] and need to solve for the concentration of [A- ]. Should they titrate with HCl or NaOH? Explain your reasoning 2. At an equivalence point of 35.0 mL, how many moles of [HA] are present in the buffer if you titrated with 0.125 M NaOH? 3. A student titrated 25.0 mL of a buffer with 0.126 M HCl. The...
Reading Data: Id participant ID number: 1.00, 2.00, 3.00, 4,00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00,...
Reading Data: Id participant ID number: 1.00, 2.00, 3.00, 4,00, 5.00, 6.00, 7.00, 8.00, 9.00, 10.00, 11.00, 12.00, 13.00, 14.00, 15.00, 16.00, 17.00, 18.00, 19.00, 20.00, 21.00, 22.00, 23.00, 24.00, 25.00, 26.00, 27.00, 28.00, 29.00, 30.00, 31.00, 32.00, 33.00, 34.00, 35.00, 36.00, 37.00, 38.00, 39.00, 40.00, 41.00, 42.00, 43.00, 44.00 G - Group indicator expressed as a binary variable (0=Directed Reading Activities, 1=control group): .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00, .00,...
A TB TC NB MB MC AC 0 $          -   $   24.00 $ (24.00) 1 $        ...
A TB TC NB MB MC AC 0 $          -   $   24.00 $ (24.00) 1 $         35 $      3.00 $      3.00 $   35.00 $      8.00 $   32.00 2 $         65 $   23.00 $   23.00 $   30.00 $   10.00 $   21.00 3 $         85 $   54.00 $   31.00 $   20.00 $   12.00 $   18.00 4 $         95 $   68.00 $   27.00 $   10.00 $   14.00 $   17.00 5 $       103 $   84.00 $   19.00 $      8.00 $   16.00 $   16.80 6...
Would this be done w a Pearson correlation or a Spearman correlation? A researcher collects data...
Would this be done w a Pearson correlation or a Spearman correlation? A researcher collects data on the relationship between length of commute and stress level. The dare are as follows: commute(min) stress (1-10 scale) 24.00                       3.00 71.00                       9.00 55.00                       5.00 34.00                       4.00 11.00                       3.00 80.00                       7.00 50.00          ...
Output Fixed Cost Variable Cost Total Cost Average Fixed Cost Average Variable Cost Average Total Cost...
Output Fixed Cost Variable Cost Total Cost Average Fixed Cost Average Variable Cost Average Total Cost Marginal Cost 0.00 10.00 - 10.00 - - - - 1.00 10.00 10.00 20.00 10.00 10.00 20.00 10.00 2.00 10.00 18.00 28.00 5.00 9.00 14.00 18.00 3.00 10.00 23.00 33.00 3.33 7.66 11.00 5.00 4.00 10.00 33.00 43.00 2.50 8.25 10.75 10.00 5.00 10.00 48.00 58.00 2.00 9.40 11.60 15.00 6.00 10.00 68.00 78.00 1.66 11.33 13.00 20.00 7.00 10.00 98.00 108.00 1.42 14.00...
13.50 The owner of a moving company typically has his most experienced manager predict the total...
13.50 The owner of a moving company typically has his most experienced manager predict the total number of labor hours that will be required to complete an upcoming move. This approach has proved useful in the past, but the owner has the business ob jective of developing a more accurate method of predicting labor hours. In a preliminary effort to provide a more accurate method, the owner has decided to use the number of cubic feet moved and the number...
1 732.00 10.00 1 795.00 16.00 1 547.00 23.00 1 465.00 21.00 1 1252.00 50.00 1...
1 732.00 10.00 1 795.00 16.00 1 547.00 23.00 1 465.00 21.00 1 1252.00 50.00 1 1255.00 150.00 1 741.00 28.00 1 1151.00 7.70 1 1186.00 2.00 1 754.00 19.00 1 679.00 16.00 1 985.00 5.40 1 1133.00 2.60 1 1139.00 3.10 1 1186.00 3.50 1 984.00 9.10 1 965.00 7.80 1 1084.00 4.10 1 986.00 8.40 1 1023.00 15.00 1 1266.00 25.00 1 1086.00 5.60 1 1044.00 4.60 1 1770.00 8.20 1 1048.00 6.10 1 1641.00 13.00 1 1331.00...
Question 2 Situation: The dataset comprises 200 records of minutes to complete a task. The data...
Question 2 Situation: The dataset comprises 200 records of minutes to complete a task. The data must be described. 2) Provide the following descriptives statistics in a table and provide a briefly narrative assessment of the data’s descriptive statistics: mean, median, standard deviation, minimum and maximum values, skewness, and kurtosis as well as a dot scale diagram. Does the data distribution appear normal (70% of assignment points)? Explain your answer. Descriptives Cholesterol Minutes_to_Task 0 9.00 1 0.00 0 4.00 0...