You are interested in the effects of time spent viewing television and Body Mass Index on cardiovascular fitness (CVF) in children. You have a sample of 60 middle school students. Each student reports on their average daily T.V. viewing (in hours). You also have a Body Mass Index (BMI) score for each of these individuals. As a measure of CVF, your dependent variable is their score on the PACER run (Progressive Aerobic Cardiovascular Endurance Run), a well-accepted measure of cardiovascular fitness in children. A higher PACER score (more completed laps) indicates better cardiovascular fitness (CVF). The results from your sample are below. Enter these data into SPSS and answer the following questions:
TV Time BMI PACER
1.00 19.00 30.00
1.00 18.00 30.00
1.00 20.00 29.00
1.00 19.00 28.00
1.00 20.00 26.00
1.00 19.00 25.00
1.00 18.00 25.00
1.00 20.00 22.00
1.00 21.00 23.00
1.00 25.00 18.00
1.00 23.00 21.00
1.00 22.00 20.00
1.00 27.00 15.00
1.00 26.00 17.00
1.00 21.00 22.00
2.00 18.00 25.00
2.00 19.00 24.00
2.00 25.00 18.00
2.00 27.00 14.00
2.00 28.00 14.00
2.00 26.00 15.00
2.00 24.00 18.00
2.00 25.00 16.00
2.00 20.00 21.00
2.00 22.00 20.00
2.00 18.00 25.00
2.00 19.00 26.00
2.00 18.00 24.00
2.00 22.00 20.00
2.00 21.00 22.00
3.00 28.00 12.00
3.00 29.00 11.00
3.00 30.00 10.00
3.00 28.00 11.00
3.00 26.00 12.00
3.00 25.00 13.00
3.00 22.00 20.00
3.00 18.00 25.00
3.00 19.00 21.00
3.00 19.00 26.00
3.00 20.00 25.00
3.00 27.00 9.00
3.00 26.00 11.00
3.00 21.00 21.00
3.00 20.00 22.00
4.00 31.00 9.00
4.00 20.00 23.00
4.00 20.00 22.00
4.00 23.00 21.00
4.00 22.00 20.00
4.00 24.00 18.00
4.00 31.00 12.00
4.00 30.00 11.00
4.00 29.00 14.00
4.00 28.00 15.00
4.00 27.00 17.00
4.00 29.00 13.00
4.00 31.00 10.00
4.00 22.00 21.00
4.00 24.00 18.00
1. Are there problems with collinearity/multicolinearity? How do you know? Present evidence of all three criteria discussed in lecture.
There are no problems with collinearity. We know that because
1. The two predictor variables are correlated <.8
2. The VIF <10
3. tolerance >.1
Give SPSS screenshots of output and give the SPSS codes and paths how to get the answers
Solution:
Multicollineraity Dignostics: Regression
Model Summaryb |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model |
R |
R Square |
Adjusted R Square |
Std. Error of the Estimate |
Change Statistics |
Durbin-Watson |
||||
R Square Change |
F Change |
df1 |
df2 |
Sig. F Change |
||||||
1 |
.933a |
.870 |
.866 |
2.091 |
.870 |
191.434 |
2 |
57 |
.000 |
.847 |
a. Predictors: (Constant), BMI, TVTime |
||||||||||
b. Dependent Variable: PACER |
ANOVAb |
||||||
---|---|---|---|---|---|---|
Model |
Sum of Squares |
df |
Mean Square |
F |
Sig. |
|
1 |
Regression |
1674.158 |
2 |
837.079 |
191.434 |
.000a |
Residual |
249.242 |
57 |
4.373 |
|||
Total |
1923.400 |
59 |
||||
a. Predictors: (Constant), BMI, TVTime |
||||||
b. Dependent Variable: PACER |
Coefficientsa |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Model |
Unstandardized Coefficients |
Standardized Coefficients |
t |
Sig. |
95% Confidence Interval for B |
Collinearity Statistics |
||||
B |
Std. Error |
Beta |
Lower Bound |
Upper Bound |
Tolerance |
VIF |
||||
1 |
(Constant) |
49.471 |
1.596 |
31.002 |
.000 |
46.276 |
52.667 |
|||
TVTime |
-.443 |
.271 |
-.088 |
-1.636 |
.107 |
-.986 |
.099 |
.793 |
1.261 |
|
BMI |
-1.255 |
.076 |
-.890 |
-16.620 |
.000 |
-1.406 |
-1.104 |
.793 |
1.261 |
|
|
Collinearity Diagnosticsa |
||||||
---|---|---|---|---|---|---|
Model |
Dimension |
Eigenvalue |
Condition Index |
Variance Proportions |
||
(Constant) |
TVTime |
BMI |
||||
1 |
1 |
2.887 |
1.000 |
.00 |
.01 |
.00 |
2 |
.100 |
5.369 |
.07 |
.88 |
.02 |
|
3 |
.013 |
14.809 |
.93 |
.11 |
.98 |
|
a. Dependent Variable: PACER |
Residuals Statisticsa |
|||||
---|---|---|---|---|---|
Minimum |
Maximum |
Mean |
Std. Deviation |
N |
|
Predicted Value |
8.79 |
26.44 |
19.10 |
5.327 |
60 |
Residual |
-5.256 |
5.072 |
.000 |
2.055 |
60 |
Std. Predicted Value |
-1.935 |
1.377 |
.000 |
1.000 |
60 |
Std. Residual |
-2.513 |
2.426 |
.000 |
.983 |
60 |
a. Dependent Variable: PACER |
RESULTS: 1. From the table of ‘Coefficientsa’ we observed that VIF < 10 and tolerance >0.1 there for ther is no presence of multicollinearity in data.
2. Also the correlation between predictor variable is 0.4548 < 0.8 which provide the information that there is no presence of multiollinearity.
3. PATH: input the data on spss spread sheet / import
Get Answers For Free
Most questions answered within 1 hours.