Question

A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project...

A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project i}, for i = 1, 2, 3, and suppose that P(A1) = 0.22, P(A2) = 0.25, P(A3) = 0.28, P(A1 ∩ A2) = 0.14, P(A1 ∩ A3) = 0.04, P(A2 ∩ A3) = 0.06, P(A1 ∩ A2 ∩ A3) = 0.01. Express in words each of the following events, and compute the probability of each event.

(a) A1 ∪ A2 Express in words the event. awarded only 1 awarded only 2 awarded neither 1 nor 2 awarded either 1 or 2 awarded either 1 or 2 (or both) Compute the probability of this event.

(b) A1' ∩ A2' [Hint: (A1 ∪ A2)' = A1' ∩ A2'] Express in words the event. awarded only 1 awarded only 2 awarded neither 1 nor 2 awarded either 1 or 2 awarded either 1 or 2 (or both) Compute the probability of this event.

(c) A1 ∪ A2 ∪ A3 Express in words the event. awarded 1 but neither 2 or 3 awarded 3 but neither 1 nor 2 awarded at least one of these three projects awarded all of the three projects awarded none of the three projects Compute the probability of this event.

(d) A1' ∩ A2' ∩ A3' Express in words the event. awarded 1 but neither 2 or 3 awarded 3 but neither 1 nor 2 awarded at least one of these three projects awarded all of the three projects awarded none of the three projects Compute the probability of this event.

(e) A1' ∩ A2' ∩ A3 Express in words the event. awarded 1 but neither 2 or 3 awarded 3 but neither 1 nor 2 awarded at least one of these three projects awarded all of the three projects awarded none of the three projects Compute the probability of this event.

(f) (A1' ∩ A2') ∪ A3 Express in words the event. awarded only 1 or 2 awarded only 3 awarded neither of 1 and 2, or awarded 3 awarded either of 1 or 2, but not awarded 3 awarded at least one of these three projects Compute the probability of this event.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project i}, for i = 1, 2, 3, and suppose that P(A1) = 0.22, P(A2) = 0.25, P(A3) = 0.28, P(A1 ∩ A2) = 0.13, P(A1 ∩ A3) = 0.03, P(A2 ∩ A3) = 0.07, P(A1 ∩ A2 ∩ A3) = 0.01. Express in words each of the following events, and compute the probability of each event. a) A1 ∪ A2 Express in words the...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project...
A computer consulting firm presently has bids out on three projects. Let Ai = {awarded project i}, for i = 1, 2, 3, and suppose that P(A1) = 0.23, P(A2) = 0.25, P(A3) = 0.29, P(A1 ∩ A2) = 0.09,P(A1 ∩ A3) = 0.11, P(A2 ∩ A3) = 0.07, P(A1 ∩ A2 ∩ A3) = 0.02. Use the probabilities given above to compute the following probabilities. (Round your answers to four decimal places.) (a)   P(A2 | A1) = (b) P(A2 ∩...
A computer consulting firm presently has bids out on three projects. Let ?? = {????? ???????...
A computer consulting firm presently has bids out on three projects. Let ?? = {????? ??????? ?}, for ? = 1,2,3, and suppose that ?(?1 ) = 0.22, ?(?2 ) = 0.25, ?(?3 ) = 0.28, ?(?1 ∩ ?2 ) = 0.11, ?(?1 ∩ ?3 ) = 0.05, ?(?2 ∩ ?3 ) = 0.07, ?(?1 ∩ ?2 ∩ ?3 ) = 0.01 Compute ?(?1 ∩ ?2 ∩ ?3 | ?1 ∪ ?2 ∪ ?3).
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true. P(A1) = 0.11   P(A2) = 0.07   P(A3) = 0.05 P(A1 ∪ A2) = 0.15 P(A1 ∪ A3) = 0.14 P(A2 ∪ A3) = 0.1 P(A1 ∩ A2 ∩ A3) = 0.01 (Round your answers to two decimal places.) (a) Given that the system has a type...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that P(A1) = 0.25, P(A2) = 0.29, P(A3) = 0.33, P(A1 ∪ A2) = 0.5, P(A1 ∪ A3) = 0.53, P(A2 ∪ A3) = 0.54, P(A1 ∩ A2 ∩ A3) = 0.02 (a) Find the probability that the system has exactly 2 of the 3 types of defects. (b) Find the probability...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true. P(A1) = 0.11 P(A2) = 0.06 P(A3) = 0.04 P(A1 ∪ A2) = 0.14 P(A1 ∪ A3) = 0.13 P(A2 ∪ A3) = 0.08 P(A1 ∩ A2 ∩ A3) = 0.01 (Round your answers to two decimal places.) (a) Given that the system has a type...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote...
A certain system can experience three different types of defects. Let Ai (i = 1,2,3) denote the event that the system has a defect of type i. Suppose that the following probabilities are true. P(A1) = 0.16      P(A2) = 0.10     P(A3) = 0.08 P(A1 ∪ A2) = 0.18      P(A1 ∪ A3) = 0.19 P(A2 ∪ A3) = 0.14      P(A1 ∩ A2 ∩ A3) = 0.02 (a) What is the probability that the system does not have a type 1 defect? (b) What is the...
1)Three independent reviewers are reviewing a book. let A1 denote the event that a favorable review...
1)Three independent reviewers are reviewing a book. let A1 denote the event that a favorable review is submitted by reviewer, I = 1, 2, 3. Assume that A1, A2, and A3 are mutually independent and that P(A1) = 0.6, P(A2) =0.57, and P(A3) = 0.4. a) Compute the probability that at least one of the reviewers submit a favorable review. b) Compute the probability that exactly two reviewers submit favorable reviews.
Part 1 The three most popular options on a certain type of new car are a...
Part 1 The three most popular options on a certain type of new car are a built-in GPS (A), a sunroof (B), and an automatic transmission (C). If 48% of all purchasers request A, 59% request B, 74% request C, 68% request A or B, 85% request A or C, 83% request B or C, and 90% request A or B or C, determine the probabilities of the following events. [Hint: "A or B" is the event that at least...
4. (Sec 2.5) Consider purchasing a system of audio components consisting of a receiver, a pair...
4. (Sec 2.5) Consider purchasing a system of audio components consisting of a receiver, a pair of speakers, and a CD player. Let A1 be the event that the receiver functions properly throughout the warranty period, A2 the event that the speakers function properly throughout the warranty period, and A3 the event that the CD player functions properly throughout the warranty period. Suppose that these events are (mutually) independent with P(A1) = .95, P(A2) = .98 and P(A3) = .80....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT