Answer:
Given,
X ~ Poisson
Y = 0 where X = 0
Y = 1000 for X = 1
Y = 2000 for X = 2,3,4.......
fx(x) = e^-*^x/x!
here mean = 0.6
E(Y) = 0*e^-0.6 + 1000*0.6*e^-0.6 + 2000*[e^-0.6*0.6^k/k! ]
= 1000*0.6*e^-0.6 + 2000[P(X >= 2)]
= 1000*0.6*e^-0.6 + 2000[1 - P(0) - P(1)]
= 1000*0.6*e^-0.6 + 2000[1 - e^-0.6 - 0.6*e^-0.6]
On solving we get
E(Y) = 573
Now,
E(Y^2) = 1000^2*0.6*e^-0.6 + 2000^2[1 - e^-0.6 - 0.6*e^-0.6]
= 816893
Consider,
Variance V(Y) = E(Y^2) - [E(Y)]^2
substitute values
= 816893 - 573^2
= 816893 - 328329
= 488564
Standard deviation = sqrt(variance(y))
= sqrt(488564)
= 698.9735331
= 699
Get Answers For Free
Most questions answered within 1 hours.