Question

STAT 180 Let X and Y be independent exponential random variables with mean equals to 4....

STAT 180 Let X and Y be independent exponential random variables with mean equals to 4.

1) What is the covariance between XY and X.

2) Let Z = max ( X, Y). Find the Probability Density Function (PDF) of Z.

3) Use the answer in part 2 to compute the E(Z).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a)....
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a). Find the cdf and density of Z = X/Y . b). Compute P(X < Y ). c). Find the cdf and density of W = min{X,Y }.
Let X and Y be independent exponential random variables with respective rates ? and ? Is...
Let X and Y be independent exponential random variables with respective rates ? and ? Is max(X, Y ) an exponential random variable?
Let X and Y be independent, identically distributed standard uniform random variables. Compute the probability density...
Let X and Y be independent, identically distributed standard uniform random variables. Compute the probability density function of XY .
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { e −x−y , 0 < x, y < ∞ 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y .
Assume that X and Y are independent random variables, each having an exponential density with parameter...
Assume that X and Y are independent random variables, each having an exponential density with parameter λ. Let Z = |X - Y|. What is the density of Z?
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X...
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X + Y. The probability that Z is less than or equal to 3 is:
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and...
2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and sigma^2 y. Let Z = 1/2(X + Y) and W =1/2 (X - Y) a. Find the joint pdf fz, w(z, w). b. Find the marginal pdf f(z). c. Are Z and W independent?
Let X and Y be random variables with the following distributions X N~ (20,2) and Y...
Let X and Y be random variables with the following distributions X N~ (20,2) and Y N~ (30,1). The covariance of X and Y is σ XY = 0.25 . Let Z= + 0.75X x 0.25Y . Find the mean and the variance of Z.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT