Question

The population standard deviation for the height of high school basketball players is 2.5 inches. If...

The population standard deviation for the height of high school basketball players is 2.5 inches. If we want to be 95% confident that the sample mean height is within 0.4 inch of the true population mean height, how many randomly selected students must be surveyed?

Fill in the blank: n=

Homework Answers

Answer #1

= 2.5 (population standard deviation)

Margin of error(MOE) = 0.4

For 95% confidence interval the level of significance () = 0.05

So, the critical value = = = = +/-1.960

Let n be the required sample size

To get the value of n we solve the following equation:-

we know,  

sample size can not be in decimal so round to nearest whole number therefore, n is 150

Answer:

150 randomly selected students must be surveyed

n = 150

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The population standard deviation for the height of high school basketball players is 4.6 inches. If...
The population standard deviation for the height of high school basketball players is 4.6 inches. If we want to be 95% confident that the sample mean height is within 0.4 inch of the true population mean height, how many randomly selected students must be surveyed? Fill in the blank: n=
The population standard deviation for the height of high school basketball players is 1.9 inches. If...
The population standard deviation for the height of high school basketball players is 1.9 inches. If we want to be 95% confident that the sample mean height is within 0.8 inch of the true population mean height, how many randomly selected students must be surveyed? Fill in the blank: n=
The population standard deviation for the height of college basketball players is 2.9 inches. If we...
The population standard deviation for the height of college basketball players is 2.9 inches. If we want to estimate 92% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3.1 inches. If we...
The population standard deviation for the height of college basketball players is 3.1 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.58 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3 inches. If we...
The population standard deviation for the height of college basketball players is 3 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed?  (Round up your answer to nearest whole number)
The population standard deviation for the height of college baseball players is 3.2 inches. If we...
The population standard deviation for the height of college baseball players is 3.2 inches. If we want to estimate 90% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college football players is 3.3 inches. If we...
The population standard deviation for the height of college football players is 3.3 inches. If we want to estimate a 90% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
The population standard deviation for the height of college hockey players is 3.4 inches. If we...
The population standard deviation for the height of college hockey players is 3.4 inches. If we want to estimate 90% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number) Answer:
The average height of 12 randomly selected Muppet basketball players is 50 inches with a standard...
The average height of 12 randomly selected Muppet basketball players is 50 inches with a standard deviation of 4 inches. The average height of 15 randomly selected Muppet football players is 47 inches with a standard deviation of 3 inches. Assuming the heights of both populations are normally distributed, are Muppet basketball players taller than football players?
The height of NBA basketball players are approximately normally distributed with a mean of 78.36 inches...
The height of NBA basketball players are approximately normally distributed with a mean of 78.36 inches and a standard deviation of 4.27 inches a) determine the height of an NBA player at the 60th percentile. b) determine the height of an NBA player at the 10th percentile and c) determine the range of heights that represent the middle 95% of all heights for NBA basketball players.