Question

The measurement error in estimating the fortune of a certain self-declared billionaire, X, has the following...

The measurement error in estimating the fortune of a certain self-declared billionaire, X, has the following cumulative distribution function:

F(x) = 0 for x < -2
F(x)= .5 + .09375(4x −x3/3) for -2 ≤ x ≤ 2

F(x) = 1 for x > 2

a) Give the probability density function for X in the interval -2, 2].

b) What is the probability that X > 1?  

c) What is the probability that the billionaire actually has a fortune less than -2?  

d) What is the probability that X > .5?  

e) What is the probability that X > 1 given that X > .5?  

f) Calculate the 37th percentile of X.  

g) What is the expected value of X?  

h) What is the expected value of X2?  

i) What is the variance of X?  

j) What is the probability that X is more than 1 above its expected value?

Homework Answers

Answer #1

a)

pdf f(x)=(d/dx)F(x)=0.09375*(4-3x2)

b)P(X>1) =1-P(X<1)=1-(0.5+0.09375*(4*1-13/3))=0.15625

c)P(X<-2)=0

d)P(X>0.5)=1-P(X<0.5)=1-(0.5+0.09375*(4*0.5-0.53/3))=0.316406

e)P(X>1|X>0.5)=P(X>1)/P(X>0.5)=0.15625/0.316406=0.493827

f)for 37 th percentile ; x=-0.35

g)E(X)= xf(x) dx = 0.09375*(4x-x3) dx =0.09375*(4x2/2-x4/4)|2-2 =0

h)

E(X2)= x2f(x) dx = 0.09375*(4x2-x4) dx =0.09375*(4x3/3-x5/5)|2-2 =0.8

i)

Var(X)=E(X2)-(E(X))2 =0.8

j)

P(X>1+0)=P(X>1)=0.15625

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute...
If the probability density function of a random variable X is ce−5∣x∣ , then (a) Compute the value of c. (b) What is the probability that 2 < X ≤ 3? (c) What is the probability that X > 0? (d) What is the probability that ∣X∣ < 1? (e) What is the cumulative distribution function of X? (f) Compute the density function of X3 . (g) Compute the density function of X2 .
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0...
Let the probability density of X be given by f(x) = c(4x - 2x^2 ), 0 < x < 2; 0, otherwise. a) What is the value of c? b) What is the cumulative distribution function of X? c) Find P(X<1|(1/2)<X<(3/2)).
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when...
X is a continuous random variable with the cumulative distribution function F(x)   = 0               when x < 0 = x2              when 0 ≤ x ≤ 1 = 1               when x > 1 Compute P(1/4 < X ≤ 1/2) What is f(x), the probability density function of X? Compute E[X]
13. If X follows the following cumulative probability distribution: 0 X≤5 0.10 (X-5) 5≤X≤7 F (X)...
13. If X follows the following cumulative probability distribution: 0 X≤5 0.10 (X-5) 5≤X≤7 F (X) 0.20 + 0.20 (X-7) 7≤X≤11 1 X≥11 a. Calculate a probability function f (X) (10 pts) b. Calculate the expected value of X and the Variance of X. (15 pts) c. Calculate the probability that X is between 6.0 and 8.80. (10 pts) d. Calculate the percentile of 70 percent. (10 pts) e. Calculate the expected g (x), if g (X) = 2X-10 (15...
A random variable X has the cumulative distribution function (cdf) given by F(x) = (1 +...
A random variable X has the cumulative distribution function (cdf) given by F(x) = (1 + e−x ) −1 , −∞ < x < ∞. (i) Find the probability density function (pdf) of X. (ii) Roughly, take 10 points in the range of x (5 points below 0 and 5 points more than 0) and plot the pdf on these 10 points. Does it look like the pdf is symmetric around 0? (iii) Also, find the expected value of X.
Suppose that X has a probability density function given by (3/8)*x^2 for 0<=x<=2 (Show all work...
Suppose that X has a probability density function given by (3/8)*x^2 for 0<=x<=2 (Show all work for this problem). (A) Find the expected value, E(X), of X. (B) Find the cumulative distribution function, F(X).
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function...
1. Decide if f(x) = 1/2x2dx on the interval [1, 4] is a probability density function 2. Decide if f(x) = 1/81x3dx on the interval [0, 3] is a probability density function. 3. Find a value for k such that f(x) = kx on the interval [2, 3] is a probability density function. 4. Let f(x) = 1 /2 e -x/2 on the interval [0, ∞). a. Show that f(x) is a probability density function b. . Find P(0 ≤...
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
f(x)=Cx 1. what value should C be for this to be a valid probability density function...
f(x)=Cx 1. what value should C be for this to be a valid probability density function on the interval [0,4]? 2. what is the Cumulative distribution function f(x) which gives P(X ≤ x) and use it to determine P(X ≤ 2). 3. what is the expected value of X? 4. figure out the value of E[6X+1] and Var(6X+1)
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤...
Let X be a random variable with probability density function f(x) = { λe^(−λx) 0 ≤ x < ∞ 0 otherwise } for some λ > 0. a. Compute the cumulative distribution function F(x), where F(x) = Prob(X < x) viewed as a function of x. b. The α-percentile of a random variable is the number mα such that F(mα) = α, where α ∈ (0, 1). Compute the α-percentile of the random variable X. The value of mα will...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT