Use the accompanying data table to
(b) determine the linear correlation
(c) determine the critical value
Data Table:
Index, i | Observed Value | f_i | Expected z-score |
1 | 35 | 0.08 | -1.41 |
2 | 37 | 0.2 | -0.84 |
3 | 41 | 0.32 | -0.47 |
4 | 43 | 0.44 | -0.15 |
5 | 55 | 0.56 | 0.15 |
6 | 57 | 0.68 | 0.47 |
7 | 60 | 0.8 | 0.84 |
8 | 65 | 0.92 | 1.41 |
Critical Value Table
Sample Size, n | Critical Value |
5 | 0.88 |
6 | 0.888 |
7 | 0.898 |
8 | 0.906 |
9 | 0.912 |
10 | 0.918 |
11 | 0.923 |
12 | 0.928 |
13 | 0.923 |
14 | 0.935 |
15 | 0.939 |
16 | 0.941 |
17 | 0.944 |
18 | 0.946 |
19 | 0.949 |
20 | 0.951 |
21 | 0.952 |
22 | 0.954 |
23 | 0.956 |
24 | 0.957 |
25 | 0.959 |
30 | 0.96 |
index, i | Observed Value | f_i | Expected z-score |
1 | 35 | 0.08 | -1.41 |
2 | 37 | 0.2 | -0.84 |
3 | 41 | 0.32 | -0.47 |
4 | 43 | 0.44 | -0.15 |
5 | 55 | 0.56 | 0.15 |
6 | 57 | 0.68 | 0.47 |
7 | 60 | 0.8 | 0.84 |
8 | 65 | 0.92 | 1.41 |
r | 0.9666333 | ||
critical r | 0.906 |
Formuila
index, i | Observed Value | f_i | Expected z-score |
1 | 35 | 0.08 | -1.41 |
2 | 37 | 0.2 | -0.84 |
3 | 41 | 0.32 | -0.47 |
4 | 43 | 0.44 | -0.15 |
5 | 55 | 0.56 | 0.15 |
6 | 57 | 0.68 | 0.47 |
7 | 60 | 0.8 | 0.84 |
8 | 65 | 0.92 | 1.41 |
r | =CORREL(B2:B9,D2:D9) | ||
critical r | 0.906 |
Correlation between observed value and Expected z-score
r = 0.9666
critical r - 0.906 {see n = 8}
Please rate
Get Answers For Free
Most questions answered within 1 hours.