a) The defect rate for a wire making process has a Poisson distribution with 1.23 defects per 1000 feet. Let X be the number of defects widgets in a randomly-selected 1000-foot length of wire. What is the probability that there will be no defects in that length of wire? State your answer rounded to three decimal digits.
b) Let X be the net weight of a randomly-selected cereal box. The distribution of net weight for this filling process is uniformly-distributed between 451.8 and 459.1 grams. What is the probability that a randomly-selected box will have a net weight less than 454 grams? State your answer rounded to three decimal digits
1).X : the number of defects widgets in a randomly-selected 1000-foot length of wire.
X~ poisson()
where, = number of defects per 1000 feet = 1.23
the pmf of the distribution be:-
the probability that there will be no defects in that length of wire be:-
2).X : the net weight of a randomly-selected cereal box .
X ~ uniform (451.8,459.1)
the pdf of the distribution be:-
the probability that a randomly-selected box will have a net weight less than 454 grams be:-
***in case of doubt, comment below. And if u liked the solution, please like.
Get Answers For Free
Most questions answered within 1 hours.