Question

Given the following linear optimization problem Maximize 10x + 20y Subject to x + y ≤...

Given the following linear optimization problem Maximize 10x + 20y Subject to x + y ≤ 50 2x + 3y ≤ 120 x ≥ 10 x, y ≥ 0

(a) Graph the constraints and determine the feasible region.

(b) Find the coordinates of each corner point of the feasible region.

(c) Determine the optimal solution and optimal objective function value.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following constraints of a linear programming model have been graphed on the graph paper provided...
The following constraints of a linear programming model have been graphed on the graph paper provided (same constraints found in problem #3) to form a feasible region: 2X    + 6Y     >=    120 10X + 2Y     > =   200 X      +     Y     <=    120 X                     <=    100                  Y    <=      80 X,Y                  >=        0 Using the graphical method, determine the optional solution and the objective function value for the following objective functions. Graph the objective function as a dashed line on...
Consider the following linear program: Max profit 8X + 4Y Subject to: 4X + 3Y ≤...
Consider the following linear program: Max profit 8X + 4Y Subject to: 4X + 3Y ≤ 480 2X + 3Y ≤ 360 X,Y ≥ 0 Use the corner point solution method to solve this linear program. The followings must be included in your answer: a) defined decision variables. b)a graph with constraints lines. c)highlighted feasible region. d)specified coordinates and profit for each corner point. e)specified optimal values of X and Y and optimal profit.
The following constraints of a linear programming model have been graphed on the graph paper provided...
The following constraints of a linear programming model have been graphed on the graph paper provided to form a feasible region: 2X    + 6Y     >=    120 10X + 2Y     > =   200 X      +     Y     <=    120 X                     <=    100                  Y    <=      80 X,Y                  >=        0 Using the graphical method, determine the optional solution and the objective function value for the following objective functions. Graph the objective function as a dashed line on the feasible region described by the...
Consider the following Linear Programming model: Maximize x+2.5y Subject to x+3y<=12 x+2y<=11 x-2y<=9 x-y>=0 x+5y<=15 x>=0...
Consider the following Linear Programming model: Maximize x+2.5y Subject to x+3y<=12 x+2y<=11 x-2y<=9 x-y>=0 x+5y<=15 x>=0 y>=0 (a) Draw the feasible region for the model, but DO NOT draw the objective function. Without graphing the objective function, find the optimal solution(s) and the optimal value. Justify your method and why the solution(s) you obtain is (are) optimal. (4 points) (b) Add the constraint “x+5y>=15” to the Linear Programming model. Is the optimal solution the same as the one in (a)?...
For the following linear programming problem:    Maximize 2x1+ 3x2    Such that        x1+ x2...
For the following linear programming problem:    Maximize 2x1+ 3x2    Such that        x1+ x2 ≤ 4      5x1+ 3x2 ≤15       x1,x2 ≥ 0 Graph the region that satisfies the constraints. Find the optimal solution and the value of the objective function at the optimal solution.
2. Solve the linear programming problem by the simplex method. Maximize 40x + 30y subject to...
2. Solve the linear programming problem by the simplex method. Maximize 40x + 30y subject to the constraints: x+y≤5 −2x + 3y ≥ 12 x ≥ 0, y ≥ 0
Maximize objective function P=3x+4y subject to: x + y ≤ 7 x ≥ 0 x+4y ≤...
Maximize objective function P=3x+4y subject to: x + y ≤ 7 x ≥ 0 x+4y ≤ 16 y ≥ 0 Attach image from graphing calculator or draw your own graph, if desired – must show feasible region and identify critical (corner) points to receive full credit!
If a problem is referred to as a linear programming problem, what must be true? A)...
If a problem is referred to as a linear programming problem, what must be true? A) the objective function must be linear B) both the objective function and the constraints must be linear C) the constraints must be linear D) the decision variables must be linear Three essential elements of a linear programming formulation are the: A) decision variables, feasibility, constraints B) constraints, objective function, non-negativity C) decision variables, objective function, constraints D) objective function, constraints, solution When constraints identify...
Consider the following linear programming problem: Maximize 12X + 10Y Subject to: 4X + 3Y <=...
Consider the following linear programming problem: Maximize 12X + 10Y Subject to: 4X + 3Y <= 480 2X + 3Y <= 360 all variables >= 0 The maximum possible value for the objective function is Selected Answer: c. 1520.
Consider the following linear programming model with 4 regular constraints: Maximize 3X + 5Y subject to:...
Consider the following linear programming model with 4 regular constraints: Maximize 3X + 5Y subject to: 4X + 4Y ≤ 48 (constraint #1) 2X + 3Y ≤ 50 (constraint #2) 1X + 2Y ≤ 20 (constraint #3) Y ≥ 2 (constraint #4) X, Y ≥ 0 (non-negativity constraints) (a) Which of the constraints is redundant? Constraint #____. Justify using the data from the above LP model: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (b) Is solution point (10,5) a feasible solution? _____. Explain using...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT