Question

The alternative hypothesis (H1) for an independent measures study states the 2 samples come from populations...

The alternative hypothesis (H1) for an independent measures study states the 2 samples come from populations that have different means.

True
False

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the test of the claims that the two samples described below come from two populations...
Consider the test of the claims that the two samples described below come from two populations whose means are equal vs. the alternative that the population means are different. Assume that the samples are independent simple random samples and that both populations are approximately normal with equal variances. Use a significance level of α=0.05 Sample 1: n1=18, x⎯⎯1=28, s1=7 Sample 2: n2=4, x⎯⎯2=30, s2=10 (a) Degrees of freedom = (b) The test statistic is t =
Which of the following are assumptions for the independent-measures t formula for hypothesis testing? 1) The...
Which of the following are assumptions for the independent-measures t formula for hypothesis testing? 1) The observations within each sample must be independent 2) The two populations from which the samples are selected must be normal 3) The two populations from which the samples are selected must be have equal variances 4) All of the above
Which of the following is not an assumption underlying the independent-measures t formula for hypothesis testing?...
Which of the following is not an assumption underlying the independent-measures t formula for hypothesis testing? The observations within each sample must be independent. The two populations from which the samples are selected must be normal. The two samples must have equal sample sizes. The two populations from which the samples are selected must have equal variances.
A repeated-measures design deals with the differences of the means, while an independent-measures design deals with...
A repeated-measures design deals with the differences of the means, while an independent-measures design deals with the mean of the differences." True False A repeated-measures design study comparing two samples uses _____ groups of participants and obtains ____ score(s) for each participant. "1, 1" "1, 2" "2, 1" "2, 2" A repeated-measures design is better than an independent-measures design because it requires more subjects. True False A repeated-measures t-test is also called a within-subjects, paired, or dependent t-test. " True...
The following results come from two independent random samples taken of two populations. Sample 1 Sample...
The following results come from two independent random samples taken of two populations. Sample 1 Sample 2 n1 = 60 n2 = 35 x1 = 13.6 x2 = 11.6 σ1 = 2.3 σ2 = 3 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2.) (b) Provide a 90% confidence interval for the difference between the two population means. (Use x1 − x2. Round your answers to two decimal places.) to (c)...
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 90 observations, were selected from two populations. The samples from populations 1 and 2 produced 73 and 64 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.09 The P-value is The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0 B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0
Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 80 observations, were selected from two populations. The samples from populations 1 and 2 produced 16 and 10 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)≠0. Use α=0.1 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0 B. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)≠0
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations...
Independent random samples, each containing 60 observations, were selected from two populations. The samples from populations 1 and 2 produced 26 and 15 successes, respectively. Test H0:(p1−p2)=0 against Ha:(p1−p2)>0 Use α=0.08 (a) The test statistic is (b) The P-value is (c) The final conclusion is A. We can reject the null hypothesis that (p1−p2)=0 and accept that (p1−p2)>0 B. There is not sufficient evidence to reject the null hypothesis that (p1−p2)=0
The following data were obtained from an independent-measures research study comparing three treatment conditions. I II...
The following data were obtained from an independent-measures research study comparing three treatment conditions. I II III n = 6 n = 4 n = 4                    M = 2 M = 2.5 M = 5 N = 14 T = 12 T = 10 T = 20 G = 42 SS = 14 SS = 9 SS = 10 ΣX2tot = 182 Use an ANOVA with α = .05 to determine whether there are any significant mean differences among the...
Assume that both samples are independent simple random samples from populations having normal distributions. 4) A...
Assume that both samples are independent simple random samples from populations having normal distributions. 4) A researcher obtained independent random samples of men from two different towns. She recorded the weights of the men. The results are summarized below: Town A Town B n1= 41 n 2 = 21 x1 = 165.1 lb x2 = 159.5 lb s1 = 34.4 lb s2 = 28.6 lb Use a 0.05 significance level to test the claim that there is more variance in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT