Question

Suppose certain coins have weights that are normally distributed with a mean of 5.629 g and...

Suppose certain coins have weights that are normally distributed with a mean of 5.629 g and a standard deviation of 0.056 g. A vending machine is configured to accept those coins with weights between 5.559 g and 5.699 g.

a. If 280 different coins are inserted into the vending​ machine, what is the expected number of rejected​ coins?

Homework Answers

Answer #1

From normal distribution, we calculate the proportion of coins with a weight between 5.559 g and 5.699. We will use that proportion as a parameter of the binomial distribution.

We need to compute Pr (5.559 ≤ X ≤ 5.699). The corresponding z-values needed to be computed are:

Therefore, we get:

The proportion of coins that are accepted in the vending machine is 0.7887.

Therefore, the proportion of coins that are rejected in the vending machine is 1 - 0.7887 = 0.2113

Hence, the expected number of rejected​ coins is 0.2113 * 280 = 59.164 59 coins.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose certain coins have weights that are normally distributed with a mean of 5.854 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.854 g and a standard deviation of 0.071 g. A vending machine is configured to accept those coins with weights between 5.744 g and 5.964 g. a. If 280 different coins are inserted into the vending machine, what is the expected number of rejected coins?
Suppose certain coins have weights that are normally distributed with a mean of 5.414 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.414 g and a standard deviation of 0.069 g. A vending machine is configured to accept those coins with weights between 5.294 g and 5.534 g. a. If 280 different coins are inserted into the vending​ machine, what is the expected number of rejected​ coins? The expected number of rejected coins is ---Round to the nearest integer
Suppose certain coins have weights that are normally distributed with a mean of 5.938 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.938 g and a standard deviation of 0.078 g. A vending machine is configured to accept those coins with weights between 5.848 g and 6.028 g. If 260 different coins are inserted into the vending​ machine, what is the expected number of rejected​ coins?
Suppose certain coins have weights that are normally distributed with a mean of 5.395 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.395 g and a standard deviation of 0.058g.A vending machine is configured to accept those coins with weights between 5.325g and 5.465 g If 290 different coins are inserted into the vending machine ,what is the expected number of rejected coins?! The expected number of rejected coins is...(round to nearest integer)
Suppose certain coins have weights that are normally distributed with a mean of 5.517 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.517 g and a standard deviation of 0.055 g. A vending machine is configured to accept those coins with weights between 5.427 g and 5.607 g a. If 260 different coins are inserted into the vending​ machine, what is the expected number of rejected​ coins? The expected number of rejected coins is? ​(Round to the nearest​ integer.)
suppose certain coins have weights that are normally distributed with a mean of 5.191g and a...
suppose certain coins have weights that are normally distributed with a mean of 5.191g and a standard deviation of 0.068 g. A vending machine is configured to accept those coins with weights between 5.121 g and 5.261 g. If 260 different coins are inserted into the vending machine, what is the expected number rejected coins.
Suppose certain coins have weights that are normally distributed with a mean of 5.271 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.271 g and a standard deviation of 0.079 g. A vending machine is configured to accept those coins with weights between 5.181 g and 5.361 g. a. If 300 different coins are inserted into the vending​ machine, what is the expected number of rejected​ coins? The expected number of rejected coins is __________. ​(Round to the nearest​ integer.) b. If 300 different coins are inserted into the...
Suppose certain coins have weights that are normally distributed with a mean of 5.159 g and...
Suppose certain coins have weights that are normally distributed with a mean of 5.159 g and a standard deviation of 0.079 g. A vending machine is configured to accept those coins with weights between 5.029 g and 5.289 g. If 270 different coins are inserted into the vending machine, what is the probability that the mean falls between the limits of 5.029 g and 5.289 g?
3. Weights of quarters are normally distributed with a mean of 5.67 g and a standard...
3. Weights of quarters are normally distributed with a mean of 5.67 g and a standard deviation of 0.06 g. Some vending machines are designed so that you can adjust the weights of quarters that are accepted. If many counterfeit coins are found, you can narrow the range of acceptable weights with the effect that most counterfeit coins are rejected along with some legitimate quarters. 3. a)  If you adjust your vending machines to accept weights between 5.60 g and 5.74...
3. Weights of quarters are normally distributed with a mean of 5.67 g and a standard...
3. Weights of quarters are normally distributed with a mean of 5.67 g and a standard deviation of 0.06 g. Some vending machines are designed so that you can adjust the weights of quarters that are accepted. If many counterfeit coins are found, you can narrow the range of acceptable weights with the effect that most counterfeit coins are rejected along with some legitimate quarters. 3. a)  If you adjust your vending machines to accept weights between 5.60 g and 5.74...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT