Question

Compare the preceding four simple linear regression models to determine which model is the preferred model....

Compare the preceding four simple linear regression models to determine which model is the preferred model. Use the Significance F values, p-values for independent variable coefficients, R-squared or Adjusted R-squared values (as appropriate), and standard errors to explain your selection.

Regression1 Regression 2 Regression 3 Regression 4
Significant F Values 2.31E-31 1.06E-36 2.70E-07 0.079243652
p-values for independent variable coefficients 2.31E-31 1.06E-36 2.70E-07 0.079243652
R squared 0.601403011 0.662202192 0.16417861 0.020666911
Standard Errors-y   0.850103399 0.633569376 1.81204468 0.649109434
Standard Errors-x 0.139580202 0.181911517 0.25245326 0.038379067

Homework Answers

Answer #1

We prefer regressions with lower p-value and f-value. Both the regressions have very low f-value and p-value, so both the regressions are significant with significant independent variable.
So until now we are unable to decide which regression to prefer.
Now, we prefer the regression with lower standard errors. Regression 1 has lower standard error for x while regression 2 has lower standard error for y.
So we still can't decide which one to prefer.
Now, we know that a better regression will have high R squared value.
Regression 2 has much higher R squared value than regression 1.
So regression 2 is preferred.
Thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the...
8.) Now, do a simple linear regression model for LifeExpect2017 vs. AverageDailyPM2.5. For credit, provide the summary output for this simple linear regression model. > Model2 <- lm(LifeExpect2017~ AverageDailyPM2.5) > summary(Model2) Call: lm(formula = LifeExpect2017 ~ AverageDailyPM2.5) Residuals: Min 1Q Median 3Q Max -17.1094 -1.7516 0.0592 1.7208 18.4604 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 81.6278 0.2479 329.23 <2e-16 *** AverageDailyPM2.5 -0.4615 0.0267 -17.29 <2e-16 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘...
In any regression model, p denotes the number of explanatory variables in the model. In simple...
In any regression model, p denotes the number of explanatory variables in the model. In simple linear regression (SLR), p=1. True/False? When testing whether the slope of a explanatory variable is 0 or not in context of multiple regression, what distribution is used to determine the p-value? standard normal distribution / t distribution with n−1 degrees of freedom / t distribution with n−2 degrees of freedom / t distribution with n−p−1 degrees of freedom ? In multiple regression, there is...
Solve the missing values in the following regression model. Write down all solutions along with their...
Solve the missing values in the following regression model. Write down all solutions along with their key letter. Regression Statistics Multiple R 0.489538 R Square 0.239648 Adjusted R Square 0.231889 Standard Error 11.76656 Observations 100 ANOVA df SS MS F Significance F Regression 1 4276.457 30.88765 2.35673E-07 Residual 138.452 Total Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0% Intercept -24.1551 12.83013 -1.88268 0.062709 -49.61605579 1.305895 -57.8589 9.548787 Food 3.167042 0.569851 2.36E-07 2.03619109 4.297893 1.670083...
Multiple linear regression results: Dependent Variable: Cost Independent Variable(s): Summated Rating Cost = -43.111788 + 1.468875...
Multiple linear regression results: Dependent Variable: Cost Independent Variable(s): Summated Rating Cost = -43.111788 + 1.468875 Summated Rating Parameter estimates: Parameter Estimate Std. Err. Alternative DF T-Stat P-value Intercept -43.111788 10.56402 ≠ 0 98 -4.0810021 <0.0001 Summated Rating 1.468875 0.17012937 ≠ 0 98 8.633871 <0.0001 Analysis of variance table for multiple regression model: Source DF SS MS F-stat P-value Model 1 8126.7714 8126.7714 74.543729 <0.0001 Error 98 10683.979 109.02019 Total 99 18810.75 Summary of fit: Root MSE: 10.441273 R-squared: 0.432...
Compare the two regression models. Does it make sense that spending and household debt could each...
Compare the two regression models. Does it make sense that spending and household debt could each be predicted by annual household income? Why or why not? 1. Predicting spending by household income Regression Statistics Multiple R 0.859343186 R Square 0.738470711 Adjusted R Square 0.737149856 Standard Error 1602.157625 Observations 200 ANOVA df SS MS F Significance F Regression 1 1435121315 1435121315 559.085376 1.42115E-59 Residual 198 508247993.2 2566909.056 Total 199 1943369308 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower...
1. General features of economic time series: trends, cycles, seasonality. 2. Simple linear regression model and...
1. General features of economic time series: trends, cycles, seasonality. 2. Simple linear regression model and multiple regression model: dependent variable, regressor, error term; fitted value, residuals; interpretation. 3. Population VS sample: a sample is a subset of a population. 4. Estimator VS estimate. 5. For what kind of models can we use OLS? 6. R-squared VS Adjusted R-squared. 7. Model selection criteria: R-squared/Adjusted R-squared; residual variance; AIC, BIC. 8. Hypothesis testing: p-value, confidence interval (CI), (null hypothesis , significance...
A least-squares simple linear regression model was fit predicting duration (in minutes) of a dive from...
A least-squares simple linear regression model was fit predicting duration (in minutes) of a dive from depth of the dive (in meters) from a sample of 43 penguins' diving depths and times. Calculate the R-squared value for the regression by filling in the ANOVA table. SS df MS F-statistic Regression Residual 1182.955 Total 537814.901 0.91 0.0902 0.0022 4.92461123041641e-23
Suppose you conduct the modified White’s Test. You estimate the regression with the squared residuals as...
Suppose you conduct the modified White’s Test. You estimate the regression with the squared residuals as the dependent variable and predicted values and predicted values squared as independent variables. From the regression results, you get the F-statistic is 0.353 with a p-value of 0.414. At a Level of Significance of 5%, what does the modified White’s Test say about the Linear Regression? Group of answer choices Heteroskedasticity is unlikely to be a problem with the Linear Regression Heteroskedasticity is likely...
An application of the simple linear regression model generated the following results involving the F test...
An application of the simple linear regression model generated the following results involving the F test of the overall regression model: p = 0.0012, R2 = 0.67. The null hypothesis, which states that none of the predictor variables are statistically significantly related to the outcome variable, should be rejected. True False
In a simple linear regression model, if the independent and dependent variables are negatively linearly related,...
In a simple linear regression model, if the independent and dependent variables are negatively linearly related, then the standard error of the estimate will also be negative.