Question

LetX1,...,Xnbe independent and identically distributed random variables with common densityN(0,σ2) f(x|σ2) =1/√2πσ^2 e^−x2/2σ2 Consider the testH0:σ2=...

LetX1,...,Xnbe independent and identically distributed random variables with common densityN(0,σ2) f(x|σ2) =1/√2πσ^2 e^−x2/2σ2 Consider the testH0:σ2= 1H1:σ2= 4 Find the most powerful testφ(x) of sizeα= 0.05 when n= 10. Your final answer should not contain any unknown constants.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
Continuous random variables X1 and X2 with joint density fX,Y(x,y) are independent and identically distributed with...
Continuous random variables X1 and X2 with joint density fX,Y(x,y) are independent and identically distributed with expected value μ. Prove that E[X1+X2] = E[X1] +E[X2].
Let X and Y be independent and identically distributed random variables with mean μ and variance...
Let X and Y be independent and identically distributed random variables with mean μ and variance σ2. Find the following: a) E[(X + 2)2] b) Var(3X + 4) c) E[(X - Y)2] d) Cov{(X + Y), (X - Y)}
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having...
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having finite mean E[xi] and variance Var(xi). a)calculate the var (x1+x2) b)calculate the var(E[xi]) c) if n-> infinite, what is Var(E[xi])?
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
f X1,X2,X3,X,X5 are independent and identically distributed geometrically distributed ran dom variables with the parameter p,...
f X1,X2,X3,X,X5 are independent and identically distributed geometrically distributed ran dom variables with the parameter p, compute (a) Find c.d.f. of Ymax = max{X1,...,X5}; (b) Find p.d.f. of Ymin = min{X1,...,X5}
Let X i ~ Unif(0, 1) for 1 <= i <= n be IID (independent identically...
Let X i ~ Unif(0, 1) for 1 <= i <= n be IID (independent identically distributed) random variables. Let Y = max(X 1 , …, X n ). What is E(Y)?
7. Let X and Y be two independent and identically distributed random variables with expected value...
7. Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(| X + Y -2 | >= 1) (ii) Now suppose that X and Y are independent and identically distributed N(1;2.56) random variables. What is P(|X+Y=2| >= 1) exactly? Briefly, state your reasoning. (iii) Why is the upper bound you obtained in Part (i) so different from the exact probability you obtained in...
Let X and Y be independent, identically distributed standard uniform random variables. Compute the probability density...
Let X and Y be independent, identically distributed standard uniform random variables. Compute the probability density function of XY .