Question

The probability of a randomly selected adult in one country being infected with a certain virus...

The probability of a randomly selected adult in one country being infected with a certain virus is 0.0030.In tests for the​ virus, blood samples from 21 people are combined. What is the probability that the combined sample tests positive for the​ virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus.

The probability that the combined sample will test positive is ___? (3 decimals)

Is it unlikely for such a combined sample to test​ positive?

Homework Answers

Answer #1

solution:-

given that p = 0.0030 , n = 21

the probability that the combined sample tests positive for the​ virus

P(x ≥ 1) = 1 - P(x = 0)

= 1 - (21C0 * 0.0030^0 * (1-0.0030)^(21-0))

= 1 - (21!/(0!(21−0)!) * 0.0030^0 * (1-0.0030)^(21-0))

= 1 - (1*0.0030^0 * (1-0.0030)^(21-0))

= 1 - 0.939

= 0.061


Is it unlikely for such a combined sample to test​ positive

we can say that

=> It is not unlikely for such a combined sample to test ​positive, because the probability that the combined sample will test positive is greater than 0.05

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The probability of a randomly selected adult in one country being infected with a certain virus...
The probability of a randomly selected adult in one country being infected with a certain virus is 0.004. In tests for the? virus, blood samples from 25 people are combined. What is the probability that the combined sample tests positive for the? virus? Is it unlikely for such a combined sample to test? positive? Note that the combined sample tests positive if at least one person has the virus.
The probability of a randomly selected adult in one country being infected with a certain virus...
The probability of a randomly selected adult in one country being infected with a certain virus is 0.003. In tests for the​ virus, blood samples from 11 people are combined. What is the probability that the combined sample tests positive for the​ virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus.
The probability of a randomly selected adult in one country being infected with a certain virus...
The probability of a randomly selected adult in one country being infected with a certain virus is 0.006 In tests for the​virus, blood samples from 27 people are combined. What is the probability that the combined sample tests positive for the​ virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus.
The probability of a randomly selected adult in one country being infected with a certain virus...
The probability of a randomly selected adult in one country being infected with a certain virus is 0.006. In tests for the​ virus, blood samples from 17 people are combined. What is the probability that the combined sample tests positive for the​ virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus The probability that the combined sample will test positive is?
The probability of a randomly selected adult in one country being infected with a certain virus...
The probability of a randomly selected adult in one country being infected with a certain virus is 0.005. In tests for the​ virus, blood samples from 17 people are combined. What is the probability that the combined sample tests positive for the​ virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus. The probability that the combined sample will test positive is _____.
The probability of a randomly selected adult in one country being infected with a certain virus...
The probability of a randomly selected adult in one country being infected with a certain virus is 0.005. In tests for the​ virus, blood samples from 22 people are combined. What is the probability that the combined sample tests positive for the​virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus. The probability that the combined sample will test positive is? ____ ​(Round...
How can I calculate this problem using the TI-38? The probability of a randomly selected adult...
How can I calculate this problem using the TI-38? The probability of a randomly selected adult in one country being infected with a certain virus is 0.003. In tests for the​ virus, blood samples from 26 people are combined. What is the probability that the combined sample tests positive for the​ virus? Is it unlikely for such a combined sample to test​ positive? Note that the combined sample tests positive if at least one person has the virus.
A certain virus infects one in every 300 300 people. A test used to detect the...
A certain virus infects one in every 300 300 people. A test used to detect the virus in a person is positive 90 90​% of the time when the person has the virus and 10 10​% of the time when the person does not have the virus.​ (This 10 10​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a...
A certain virus infects one in every 200200 people. A test used to detect the virus...
A certain virus infects one in every 200200 people. A test used to detect the virus in a person is positive 9090​% of the time when the person has the virus and 1010​% of the time when the person does not have the virus.​ (This 1010​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a person tests​ positive, determine...
A certain virus infects one in every 200 people. A test used to detect the virus...
A certain virus infects one in every 200 people. A test used to detect the virus in a person is positive 80​% of the time when the person has the virus and 15​% of the time when the person does not have the virus.​ (This 15​% result is called a false positive​.) Let A be the event​ "the person is​ infected" and B be the event​ "the person tests​ positive." ​(a) Using​ Bayes' Theorem, when a person tests​ positive, determine...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT