Calculate the mean and the standard deviation of this probability distribution.
X (Loss) | P(X) |
$0 | 0.88 |
$100 | 0.05 |
$500 | 0.03 |
$1,000 | 0.02 |
$5,000 | 0.01 |
$10,000 | 0.007 |
$20,000 | 0.003 |
Solution:
Mean can be calculated as
Mean = summation(Xi*P(Xi))
X |
P(X) |
Xi*P(Xi) |
0 |
0.88 |
0 |
100 |
0.05 |
5 |
500 |
0.03 |
15 |
1000 |
0.02 |
20 |
5000 |
0.01 |
50 |
10000 |
0.007 |
70 |
20000 |
0.003 |
60 |
Mean = 0 + 5+15+20+50+70+60 = 220
Standard deviation can be calculated as
Standard deviation = sqrt(Summation(Xi-mean)^2*P(Xi))
X |
P(X) |
Xi*P(Xi) |
Xi-mean |
(Xi-mean)^2 |
(Xi-mean)^2*P(Xi) |
0 |
0.88 |
0 |
-220 |
48400 |
42592 |
100 |
0.05 |
5 |
-120 |
14400 |
720 |
500 |
0.03 |
15 |
280 |
78400 |
2352 |
1000 |
0.02 |
20 |
780 |
608400 |
12168 |
5000 |
0.01 |
50 |
4780 |
22848400 |
228484 |
10000 |
0.007 |
70 |
9780 |
95648400 |
669538.8 |
20000 |
0.003 |
60 |
19780 |
391248400 |
1173745.2 |
Standard deviation = sqrt(42592 + 720 + 2352 + 12168 + 228484 + 669538.8 + 1173745.2) = sqrt(2129600) = 1459.31
Get Answers For Free
Most questions answered within 1 hours.