Question

A student researcher compares the ages of cars owned by students and cars owned by faculty...

A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 263 cars owned by students had an average age of 7.25 years. A sample of 291 cars owned by faculty had an average age of 7.12 years. Assume that the population standard deviation for cars owned by students is 3.77 years, while the population standard deviation for cars owned by faculty is 2.99 years. Determine the 90% confidence interval for the difference between the true mean ages for cars owned by students and faculty

Step 2 of 3 :  

Calculate the margin of error of a confidence interval for the difference between the two population means. Round your answer to six decimal places. point of estimate= .13

Homework Answers

Answer #1


= 7.25 ,   = 7.12

n1 = 263 , n2 = 291

= 3.77 , =  2.99

C= 90%

1)

formula for confidence interval is

Where Zc = 1.645

−0.3489 <    < 0.60889

Thus we get 90% confidence interval as ( −0.3489 , 0.6089)

2)

formula for margin of error is

Margin of error = 0.478928

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 263 cars owned by students had an average age of 7.25 years. A sample of 291 cars owned by faculty had an average age of 7.12 years. Assume that the population standard deviation for cars owned by students is 3.77 years, while the population standard deviation for cars owned by faculty is 2.99 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 8484 cars owned by students had an average age of 5.78 years. A sample of 118 cars owned by faculty had an average age of 5.79 years. Assume that the population standard deviation for cars owned by students is 2.39 years, while the population standard deviation for cars owned by faculty is 3.27 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 98 cars owned by students had an average age of 8.57 years. A sample of 146 cars owned by faculty had an average age of 8.1 years. Assume that the population standard deviation for cars owned by students is 2.89 years, while the population standard deviation for cars owned by faculty is 3.85 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local State College. A sample of 98 cars owned by students had an average age of 8.39 years. A sample of 80 cars owned by faculty had an average age of 5.03 years. Assume that the population standard deviation for cars owned by students is 2.93 years, while the population standard deviation for cars owned by faculty is 3.42 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 233233 cars owned by students had an average age of 6.626.62 years. A sample of 280280 cars owned by faculty had an average age of 7.947.94 years. Assume that the population standard deviation for cars owned by students is 2.132.13 years, while the population standard deviation for cars owned by faculty is 3.143.14 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 233 cars owned by students had an average age of 6.62 years. A sample of 280 cars owned by faculty had an average age of 7.94 years. Assume that the population standard deviation for cars owned by students is 2.13 years, while the population standard deviation for cars owned by faculty is 3.14 years. Determine the...
A student researcher compares the ages of cars owned by students and cars owned by faculty...
A student researcher compares the ages of cars owned by students and cars owned by faculty at a local state college. A sample of 224 cars owned by students had an average age of 5.06 years. A sample of 233 cars owned by faculty had an average age of 7.19 years. Assume the standard deviation is known to be 3.42 years for age of cars owned by students and 2.81 years for age of cars owned by faculty. Determine the...
A group of university students are interested in comparing the average age of cars owned by...
A group of university students are interested in comparing the average age of cars owned by students and the average age of cars owned by faculty. They randomly selected 25 cars that are own by students and 20 cars that are owned by faculty. The average age and standard deviation obtained from the students’ cars are 6.78 years and 5.21 years, respectively. The sample of faculty cars produced a mean and a standard deviation of 5.86 years, and 2.72. At...
A student researcher compares the heights of American students and non-American students from the student body...
A student researcher compares the heights of American students and non-American students from the student body of a certain college in order to estimate the difference in their mean heights. A random sample of 12 American students had a mean height of 67.9 inches with a standard deviation of 2.08 inches. A random sample of 18 non-American students had a mean height of 64 inches with a standard deviation of 1.62 inches. Determine the 99 % confidence interval for the...
A student researcher compares the heights of American students and non-American students from the student body...
A student researcher compares the heights of American students and non-American students from the student body of a certain college in order to estimate the difference in their mean heights. A random sample of 12 American students had a mean height of 69.6 inches with a standard deviation of 2.96 inches. A random sample of 18 non-American students had a mean height of 64.2 inches with a standard deviation of 1.64 inches. Determine the 95% confidence interval for the true...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT