Question

A company produces steel rods. The lengths of the steel rods are normally distributed with a...

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 127.8-cm and a standard deviation of 1.6-cm. For shipment, 16 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 126.7-cm. P(M > 126.7-cm) = Enter your answer as a number accurate to 4 decimal places.

Homework Answers

Answer #1

Please rate. Thanks !!!

Note : For sampling distribution for n = 16, mean will remains equal to population mean as per CLT (Central limit theorem) and std. dev is equal to population std. dev. divided by square root of sample size.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 110.9-cm and a standard deviation of 0.6-cm. For shipment, 7 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 110.9-cm. P(M < 110.9-cm) = ______________ Enter your answer as a number accurate to 4 decimal places.
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 91.1-cm and a standard deviation of 0.5-cm. For shipment, 25 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 90.8-cm. P(M > 90.8-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 211.4-cm and a standard deviation of 1.3-cm. For shipment, 5 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 211.5-cm. P(M > 211.5-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 129.2-cm and a standard deviation of 0.5-cm. For shipment, 27 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 129.3-cm. P(M > 129.3-cm) = __________
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 170.5-cm and a standard deviation of 1.1-cm. For shipment, 12 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 171-cm and 171.5-cm. P(171-cm < M < 171.5-cm) = Enter your answer as a number accurate to 4 decimal places.
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 237.4-cm and a standard deviation of 1.6-cm. For shipment, 6 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 237.5-cm and 239.1-cm. P(237.5-cm < M < 239.1-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 246.7-cm and a standard deviation of 0.8-cm. For shipment, 23 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is greater than 246.6-cm. P(M > 246.6-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are...
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 226.6-cm and a standard deviation of 1.7-cm. For shipment, 10 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is less than 227.9-cm. P(M < 227.9-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 245.7-cm and a standard deviation of 1.8-cm. For shipment, 5 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 245.1-cm and 248.2-cm. P(245.1-cm < M < 248.2-cm) =
A company produces steel rods. The lengths of the steel rods are normally distributed with a...
A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 215.6-cm and a standard deviation of 2.4-cm. For shipment, 15 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 215-cm and 216.5-cm. P(215-cm < M < 216.5-cm) = Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3...