Question

A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of 170.5-cm and a standard deviation of 1.1-cm. For shipment, 12 steel rods are bundled together. Find the probability that the average length of a randomly selected bundle of steel rods is between 171-cm and 171.5-cm. P(171-cm < M < 171.5-cm) = Enter your answer as a number accurate to 4 decimal places.

Answer #1

Solution :

Given that,

mean = = 170.5

standard deviation = = 1.1

n = 12

= 170.5

_{
=}
/
n = 1.1
12 = 0.3175

P (171 < M < 171.5 )

P ( 171 - 170.5 / 0.3175) < ( M -
/_{}
) < ( 171.5 - 170.5 / 0.3175)

P ( 0.5 / 0.3175 < z < 1 / 0.3175 )

P (1.57 < z < 3.15 )

P ( z < 3.15 ) - P ( z < 1.57)

Using z table

= 0.9992 - 0.9418

= 0.0574

Probability = 0.0574

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 110.9-cm and a standard
deviation of 0.6-cm. For shipment, 7 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 110.9-cm.
P(M < 110.9-cm) = ______________
Enter your answer as a number accurate to 4 decimal places.

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 127.8-cm and a standard
deviation of 1.6-cm. For shipment, 16 steel rods are bundled
together. Find the probability that the average length of a
randomly selected bundle of steel rods is greater than 126.7-cm.
P(M > 126.7-cm) = Enter your answer as a number accurate to 4
decimal places.

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 91.1-cm and a standard
deviation of 0.5-cm. For shipment, 25 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is greater than 90.8-cm.
P(M > 90.8-cm) =

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 226.6-cm and a standard
deviation of 1.7-cm. For shipment, 10 steel rods are bundled
together. Find the probability that the average length of a
randomly selected bundle of steel rods is less than 227.9-cm. P(M
< 227.9-cm) =

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 211.4-cm and a standard
deviation of 1.3-cm. For shipment, 5 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is greater than 211.5-cm.
P(M > 211.5-cm) =

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 129.2-cm and a standard
deviation of 0.5-cm. For shipment, 27 steel rods are bundled
together. Find the probability that the average length of a
randomly selected bundle of steel rods is greater than 129.3-cm.
P(M > 129.3-cm) = __________

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 179-cm and a standard deviation
of 2.4-cm. For shipment, 12 steel rods are bundled together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 177.8-cm.
P(M < 177.8-cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
obtained using exact z-scores or z-scores rounded
to 3 decimal places are...

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 263.6 cm and a standard
deviation of 0.5 cm. For shipment, 27 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is less than 263.6 cm.
P(¯xx¯ < 263.6 cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
should be obtained using zz scores rounded to...

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 245.7-cm and a standard
deviation of 1.8-cm. For shipment, 5 steel rods are bundled
together. Find the probability that the average length of a
randomly selected bundle of steel rods is between 245.1-cm and
248.2-cm.
P(245.1-cm < M < 248.2-cm) =

A company produces steel rods. The lengths of the steel rods are
normally distributed with a mean of 237.4-cm and a standard
deviation of 1.6-cm. For shipment, 6 steel rods are bundled
together.
Find the probability that the average length of a randomly selected
bundle of steel rods is between 237.5-cm and 239.1-cm.
P(237.5-cm < M < 239.1-cm) =
Enter your answer as a number accurate to 4 decimal places. Answers
obtained using exact z-scores or z-scores rounded
to 3...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 9 minutes ago

asked 9 minutes ago

asked 29 minutes ago

asked 31 minutes ago

asked 52 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago