Question

Let X be amount of losses in dollars and assume that X ~ Gamma(α, θ). Let...

Let X be amount of losses in dollars and assume that X ~ Gamma(α, θ). Let Y be the amount of losses in thousand of dollars, what is the distribution of Y?

Homework Answers

Answer #1

TOPIC:Transformation of random variables.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior...
Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find the Bayes estimate under squared error loss. (c) The variance of the data distribution is φ= 3θ2. Find the Bayes estimator (under squared error loss) for φ.Let X1,...,Xn∼iid Gamma(3,1/θ) and we assume the prior for θ is InvGamma(10,2). (a) Find the posterior distribution for θ. (b) If n= 10 and   ̄x= 18.2, find...
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, ....
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, . . . Let the prior distribution for θ be f(θ) = e^−θ for θ > 0. (a) Show that the posterior distribution is a Gamma distribution. With what parameters? (b) Find the Bayes’ estimator for θ.
STAT 120 Suppose that X have a gamma distribution with parameters a = 2 and θ=...
STAT 120 Suppose that X have a gamma distribution with parameters a = 2 and θ= 3, and suppose that the conditional distribution of Y given X=x, is uniform between 0 and x. (1) Find E(Y) and Var(Y). (2) Find the Moment Generating Function (MGF) of Y. What is the distribution of Y?
Let X be a gamma random variable with parameters α > 0 and β > 0....
Let X be a gamma random variable with parameters α > 0 and β > 0. Find the probability density function of the random variable Y = 3X − 1 with its support.
Let X1,...,Xn i.i.d. Gamma(α,β) with α > 0, β > 0 (a) Assume both α and...
Let X1,...,Xn i.i.d. Gamma(α,β) with α > 0, β > 0 (a) Assume both α and β are unknown, find their momthod of moment estimators: αˆMOM and βˆMOM. (b) Assume α is known and β is unknown, find the maximum likelihood estimation for β.
Let Γ(α) be the Gamma function, defined by Γ(α) = ∫∞ 0 e −xx α−1 dx...
Let Γ(α) be the Gamma function, defined by Γ(α) = ∫∞ 0 e −xx α−1 dx for α > 0. Prove that Γ(1/2) = √ π. (Hint: Let y = √ 2x and use properties of the standard normal density function.).
Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y....
Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y. What will be the distribution of Z? Hint: Use moment generating function.
Let X ∼ Beta(α, β). (a) Show that EX 2 = (α + 1)α (α +...
Let X ∼ Beta(α, β). (a) Show that EX 2 = (α + 1)α (α + β + 1)(α + β) . (b) Use the fact that EX = α/(α + β) and your answer to the previous part to show that Var X = αβ (α + β) 2 (α + β + 1). (c) Suppose X is the proportion of free-throws made over the lifetime of a randomly sampled kid, and assume that X ∼ Beta(2, 8) ....
Let X have a Beta(θ, θ) distribution. Is X a complete sufficient statistics (C.S.S) for θ?...
Let X have a Beta(θ, θ) distribution. Is X a complete sufficient statistics (C.S.S) for θ? (Consider X as just one random sample from Beta(θ, θ))
Let Y ⇠ Gamma(alpha,beta) and conditioned on Y = y, X ⇠ Poisson(y). Find the unconditional...
Let Y ⇠ Gamma(alpha,beta) and conditioned on Y = y, X ⇠ Poisson(y). Find the unconditional distribution of X in the case that alpha = r is an integer and beta=1-p/p
for p in (0, 1). 
Find the conditional distribution of Y|X = x. (Use Bayes’ rule)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT