Consider the following linear programming model with 4 regular constraints: Maximize 3X + 5Y subject to: 4X + 4Y ≤ 48 (constraint #1) 2X + 3Y ≤ 50 (constraint #2) 1X + 2Y ≤ 20 (constraint #3) Y ≥ 2 (constraint #4) X, Y ≥ 0 (non-negativity constraints) (a) Which of the constraints is redundant? Constraint #____. Justify using the data from the above LP model: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ (b) Is solution point (10,5) a feasible solution? _____. Explain using the data from above LP model: ________________________________________________________________________ ________________________________________________________________________ (c) Which of the following points yields the best solution? Underline the best one: (7, 5), (2, 8), (6, 6). Justify your answer using the data from the above LP model: ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________
Get Answers For Free
Most questions answered within 1 hours.