Question

In a survey, the planning value for the population proportion is p*=.25 . How large a...

In a survey, the planning value for the population proportion is p*=.25 . How large a sample should be taken to provide a 95% confidence interval with a margin of error of .06? Round your answer to next whole number.

Homework Answers

Answer #1

Solution :

Given that,

= 0.25

1 - = 1 - 0.25= 0.75

margin of error = E = 0.06

At 95% confidence level the z is ,

= 1 - 95% = 1 - 0.95 = 0.05

/ 2 = 0.05 / 2 = 0.025

Z/2 = Z0.025 = 1.96 ( Using z table )

Sample size = n = (Z/2 / E)2 * * (1 - )

= (1.96 / 0.06)2 * 0.25* 0.75

= 200.08

Sample size =200

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a survey, the planning value for the population proportion is p* = 0.26. How large...
In a survey, the planning value for the population proportion is p* = 0.26. How large a sample should be taken to provide a 95% confidence interval with a margin of error of 0.05? (Round your answer up to nearest whole number.)
In a survey, the planning value for the population proportion is p* = 0.31. How large...
In a survey, the planning value for the population proportion is p* = 0.31. How large a sample should be taken to provide a 95% confidence interval with a margin of error of 0.05? (Round your answer up to nearest whole number.)
At 95% confidence, how large a sample should be taken to obtain a margin of error...
At 95% confidence, how large a sample should be taken to obtain a margin of error of 0.026 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p*. Round up to the next whole number.
At 95% confidence, how large a sample should be taken to obtain a margin of error...
At 95% confidence, how large a sample should be taken to obtain a margin of error of .015 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for P* . Round up to the next whole number.
At 99% confidence, how large a sample should be taken to obtain a margin of error...
At 99% confidence, how large a sample should be taken to obtain a margin of error of .012 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p*. Round up to the next whole number.
At 99% confidence, how large a sample should be taken to obtain a margin of error...
At 99% confidence, how large a sample should be taken to obtain a margin of error of 0.041 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p* . Round up to the next whole number.
At 99% confidence, how large a sample should be taken to obtain a margin of error...
At 99% confidence, how large a sample should be taken to obtain a margin of error of 0.030 for the estimation of a population proportion? Assume that past data are not available for developing a planning value for p*. Round up to the next whole number.
How large a sample should be selected to provide a 95% confidence interval with a margin...
How large a sample should be selected to provide a 95% confidence interval with a margin of error of 4? Assume that the population standard deviation is 30 . Round your answer to next whole number.
Consider a population having a standard deviation equal to 9.94. We wish to estimate the mean...
Consider a population having a standard deviation equal to 9.94. We wish to estimate the mean of this population. (a) How large a random sample is needed to construct a 95% confidence interval for the mean of this population with a margin of error equal to 1? (Round your answer to the next whole number.) The random sample is             units. (b) Suppose that we now take a random sample of the size we have determined in part a. If we...
Annual starting salaries for college graduates with degrees in business administration are generally expected to be...
Annual starting salaries for college graduates with degrees in business administration are generally expected to be between $41,000 and $55,200. Assume that a 95% confidence interval estimate of the population mean annual starting salary is desired. (Round your answers up to the nearest whole number.) What is the planning value for the population standard deviation? (a) How large a sample should be taken if the desired margin of error is $600? (b) How large a sample should be taken if...