Question

The heights of 40 randomly chosen men illustrates a mean height of 175cm and a standard...

The heights of 40 randomly chosen men illustrates a mean height of 175cm and a standard deviation of 20cm. Estimate at the 99% confidence level what the height of all men will be

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The heights of men are normally distributed with a mean of 69 inches and a standard...
The heights of men are normally distributed with a mean of 69 inches and a standard deviation of 2.8 inches. What height separates the lowest 14% of heights?
Men heights are assumed to be normally distributed with mean 70 inches and standard deviation 4...
Men heights are assumed to be normally distributed with mean 70 inches and standard deviation 4 inches; what is the probability that 4 randomly selected men have an average height less than 72 inches?
A large study of the heights of 920 adult men found that the mean height was...
A large study of the heights of 920 adult men found that the mean height was 71 inches tall. The standard deviation was 7 inches. If the distribution of data was normal, what is the probability that a randomly selected male from the study was between 64 and 92 inches tall? Use the 68-95-99.7 rule (sometimes called the Empirical rule or the Standard Deviation rule). For example, enter 0.68, NOT 68 or 68%.
Assume that the heights of men are normally distributed with a mean of 66.8 inches and...
Assume that the heights of men are normally distributed with a mean of 66.8 inches and a standard deviation of 6.7 inches. If 64 men are randomly selected, find the probability that they have a mean height greater than 67.8 inches.
Assume that the heights of men are normally distributed with a mean of 69.3 inches and...
Assume that the heights of men are normally distributed with a mean of 69.3 inches and a standard deviation of 3.5 inches. If 100 men are randomly selected, find the probability that they have a mean height greater than 70.3 inches.
A student researcher compares the heights of men and women from the student body of a...
A student researcher compares the heights of men and women from the student body of a certain college in order to estimate the difference in their mean heights. A random sample of 14 men had a mean height of 67.7 inches with a standard deviation of 3.06 inches. A random sample of 17 women had a mean height of 64.7 inches with a standard deviation of 1.97 inches. Determine the 90% confidence interval for the true mean difference between the...
Assume that the heights of men are normally distributed with a mean of 68.1 inches and...
Assume that the heights of men are normally distributed with a mean of 68.1 inches and a standard deviation of 2.1 inches. If 36 men are randomly​ selected, find the probability that they have a mean height greater than 69.1 inches. Round to four decimal places.
A random sample of 16 men have a mean height of 67.5 inches and a standard...
A random sample of 16 men have a mean height of 67.5 inches and a standard deviation of 3.4 3.4 inches. Construct a​ 99% confidence interval for the population standard​ deviation, sigma σ.
15. Assume that the heights of men are normally distributed with a mean of 70 inches...
15. Assume that the heights of men are normally distributed with a mean of 70 inches and a standard deviation of 3.5 inches. If 100 men are randomly​ selected, find the probability that they have a mean height greater than 71 inches. A. 9.9671
A student researcher compares the heights of men and women from the student body of a...
A student researcher compares the heights of men and women from the student body of a certain college in order to estimate the difference in their mean heights. A random sample of 15 men had a mean height of 70.7 inches with a standard deviation of 3.24 inches. A random sample of 88 women had a mean height of 63.4 inches with a standard deviation of 2.44 inches. Determine the 98% confidence interval for the true mean difference between the...