Question

Given: If the median is named ?(5) then: ?(Y(5)) = 1.7326? ?(Y(5)2) = 3.2819?2 Suggest an...

Given: If the median is named ?(5) then:

?(Y(5)) = 1.7326?

?(Y(5)2) = 3.2819?2

Suggest an unbiased estimator for ? that is a function of the median. Call it ?2

I got E(Y5/1.7326? )?

Find E(?2), B(?2), Var(?2) and MSE (?2)

​​​​​​​

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let Y1, Y2, …, Yndenote a random sample of size n from a population whose density...
Let Y1, Y2, …, Yndenote a random sample of size n from a population whose density is given by f(y) = 5y^4/theta^5 0<y<theta 0 otherwise a) Is an unbiased estimator of θ? b) Find the MSE of Y bar c) Find a function of that is an unbiased estimator of θ.
Given random variable Y, E(Y) = theta Var(Y) = (theta^2)/50 theta hat = bY where b<...
Given random variable Y, E(Y) = theta Var(Y) = (theta^2)/50 theta hat = bY where b< 1 MSE(theta hat) = (11 * theta^2)/512 Find b
Suppose that X and Y are random samples of observations from a population with mean μ...
Suppose that X and Y are random samples of observations from a population with mean μ and variance σ2. Consider the following two unbiased point estimators of μ. A = (2/3)X + (1/3)Y B = (5/4)X - (1/4)Y Find variance of A. Var(A) and Var(B) Efficient and unbiased point estimator for μ is = ?
Find the estimator of σ^2, σ^2=ρS^2 (where ρ is a constant multiplier) that minimizes the MSE....
Find the estimator of σ^2, σ^2=ρS^2 (where ρ is a constant multiplier) that minimizes the MSE. Useful facts: E(S^2)=σ^2, E(ρS^2) = ρσ^2, Var(ρS^2)=ρ^2Var(S^2) and Var(S^2)=(2σ^4)/n-1. Express MSE as a function of ρ and and find the value of ρ that minimizes this expression. (Hint: Take the derivative with respect to , set equal to zero, solve for ρ, etc.)
Suppose X and Y are independent variables with E(X) = E(Y ) = θ, Var(X) =...
Suppose X and Y are independent variables with E(X) = E(Y ) = θ, Var(X) = 2 and Var(Y ) = 4. The two estimators for θ, W1 = 1/2 X + 1/2 Y and W2 = 3/4 X + 1/4 Y . (1) Are W1 and W2 unbiased? (2) Which estimator is more efficient (smaller variance)?
Given the following joint density, f(x,y)={10xy^2 if 0<x<y<1 f(x,y)={ 0 otherwise 1. frequency function x given...
Given the following joint density, f(x,y)={10xy^2 if 0<x<y<1 f(x,y)={ 0 otherwise 1. frequency function x given y 2. E(x given y), Var(x given y) 3. Var(E(x given y), E(Var(x given y)
VERY URGENT !!!! Suppose that X and Y are random samples of observations from a population...
VERY URGENT !!!! Suppose that X and Y are random samples of observations from a population with mean μ and variance σ2. Consider the following two unbiased point estimators of μ. A = (7/4)X - (3/4)Y    B = (1/3)X + (2/3)Y [Give your answers as ratio (eg: as number1 / number2 ) and DO NOT make any cancellation]   1.    Find variance of A. Var(A) =(Answer)*σ2 2.    Find variance of B. Var(B) =(Answer)*σ2 3. Efficient and unbiased point...
Consider the joint pdf f(x, y) = 3(x^2+ y)/11 for 0 ≤ x ≤ 2, 0...
Consider the joint pdf f(x, y) = 3(x^2+ y)/11 for 0 ≤ x ≤ 2, 0 ≤ y ≤ 1. (a) Calculate E(X), E(Y ), E(X^2), E(Y^2), E(XY ), Var(X), Var(Y ), Cov(X, Y ). (b) Find the best linear predictor of Y given X. (c) Plot the CEF and BLP as a function of X.
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
Problem 3. Let Y1, Y2, and Y3 be independent, identically distributed random variables from a population...
Problem 3. Let Y1, Y2, and Y3 be independent, identically distributed random variables from a population with mean µ = 12 and variance σ 2 = 192. Let Y¯ = 1/3 (Y1 + Y2 + Y3) denote the average of these three random variables. A. What is the expected value of Y¯, i.e., E(Y¯ ) =? Is Y¯ an unbiased estimator of µ? B. What is the variance of Y¯, i.e, V ar(Y¯ ) =? C. Consider a different estimator...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT