Question

Determine whether the outcome is a Type I error, a Type II error, or a correct...

Determine whether the outcome is a Type I error, a Type II error, or a correct decision.

A test is made of

=:H0μ60 versus <:H1μ60

.

The true value of μ is 58 , and H0 is not rejected.

Homework Answers

Answer #1

The null and alternative hypothesis are:

versus

The true value of μ is 58 i.e. the alternative hypothesis is true meaning the null hypothesis is false. However, we have failed to reject the false null hypothesis.

In statistical hypothesis testing, a type II error is the non-rejection of a false null hypothesis which is the case here. Therefore the outcome is a

Let me know in the comments if anything is not clear. I will reply ASAP! Please do upvote if satisfied!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine whether the outcome is a Type I error, a Type II error, or a correct...
Determine whether the outcome is a Type I error, a Type II error, or a correct decision. A test is made of H0: μ = 25 versus H1: μ ≠ 25. The true value of μ is 25 and H0 is rejected.
determine whether the outcome is a Type I error, a type II error, or a correct...
determine whether the outcome is a Type I error, a type II error, or a correct decision, explain your answer. A test is made of H0:u=18 versus H1:unot equal 18. the true value of u is 18 and H0 is not rejected
A test is made of H0: μ = 25 versus H1: μ ≠ 25. The true...
A test is made of H0: μ = 25 versus H1: μ ≠ 25. The true value of μ is 28 and H0 is rejected. Determine whether the outcome is a Type I error, a Type II error, or a correct decision.        a-Correct decision         b-Type II error         c-Type I error
For the given significance test, explain the meaning of a Type I error, a Type II...
For the given significance test, explain the meaning of a Type I error, a Type II error, or a correct decision as specified. A health insurer has determined that the "reasonable and customary" fee for a certain medical procedure is $1200. They suspect that the average fee charged by one particular clinic for this procedure is higher than $1200. The insurer performs a significance test to determine whether their suspicion is correct using α = 0.05. The hypotheses are: H0:...
A test is made of H0: μ = 10, H1: μ > 10. H0 is rejected....
A test is made of H0: μ = 10, H1: μ > 10. H0 is rejected. The true value of μ is 10. Is the result a Type I error, a Type II error, or the correct decision?
Regarding the definition of Type I and Type II error, which of the following is correct?...
Regarding the definition of Type I and Type II error, which of the following is correct? A) Type I error: Fail to reject the null hypothesis when it is actually false. B) Type II error: Reject the null hypothesis when it is actually true. C) The probability of Type I error is equal to the significance level. D) Neither Type I error nor Type II error can be controlled by the experimenter.
Determine the probability of making a Type II error for the following hypothesis test, given that...
Determine the probability of making a Type II error for the following hypothesis test, given that μ=1061 μ=1061. H0 : μ = 1040 H1 : μ >1040 For this test, take σ=47, n=26, and α=0.07. P(Type II Error) = I would really like to understand how to solve this kind of question not just the answer if anyone has the time to explain the logic (and formulas) it would be much appreciated
A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a...
A test of H0: μ = 60 versus H1: μ ≠ 60 is performed using a significance level of 0.01. The P-value is 0.033. If the true value of μ is 53, does the conclusion result in a Type I error, a Type II error, or a correct decision?
Can someone answer and explain how to do these problems? 1 Type II Error: For the...
Can someone answer and explain how to do these problems? 1 Type II Error: For the roulette table in (Q6), determine which hypothesis testing scenario has the larger Type II error probability for a two-sided hypothesis for HO: p=18/19: 1. a) N=10,000, p=0.96 , α=0.05 OR b) N=10,000, p=0.97 , α=0.05. 2. a) N=10,000, p=0.96, α=0.05 OR b) N=50,000, p=0.96, α=0.05. 3. a) N=10,000, p=0.97, α=0.05 OR b) N=10,000, p=0.97, α=0.01. Describe how the Type II error is influenced by...
(1 point) Type I error is: A. Deciding the null hypothesis is true when it is...
(1 point) Type I error is: A. Deciding the null hypothesis is true when it is false B. Deciding the alternative hypothesis is true when it is false C. Deciding the null hypothesis is false when it is true D. Deciding the alternative hypothesis is true when it is true E. All of the above F. None of the above Type II error is: A. Deciding the null hypothesis is false when it is true B. Deciding the alternative hypothesis...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT