PART B:
Covid-19 Situation Report, Table 2, represents the number of confirmed Covid 19 cases of top 50 affected coutries as per the COVID 19 Situation report released by World Health Organization on May 31, 2020.
1 716 078 | 465 166 | 148 285 | 94 858 | 89 741 | 84 627 | 38 571 | 26 688 | 16 908 | 14 702 |
12 531 | 30 967 | 148 950 | 83 384 | 69 496 | 55 262 | 33 896 | 26 192 | 23 449 | 15 094 |
11 468 | 16 851 | 405 843 | 272 830 | 239 600 | 232 664 | 181 482 | 163 103 | 148 436 | 58 186 |
46 257 | 41 658 | 37 113 | 32 203 | 30 762 | 24 929 | 23 672 | 23 571 | 19 133 | 17 012 |
16 638 | 11 633 | 11 381 | 10 858 | 182 143 | 44 608 | 25 773 | 84 570 | 34 366 | 17 224 |
Determine the following types of averages for the discrete dataset in Table 2;
As the given dataset is large, and the members in it are also large, we use R Software to calculate the mentioned measures.
The R code is given below:
a=c(1716078,465166,148285,94858,89741,84627,38571,26688,16908,14702,12531,30967,148950,83384,69496,55262,33896,26192,23449,15094,11468,16851,405843,272830,239600,232664,181482,163103,148436,58186,46257,41658,37113,32203,30762,24929,23672,23571,19133,17012,16638,11633,11381,10858,182143,44608,25773,84570,34366,17224)
AM=mean(a)
n=length(a)
GM=(prod(a))^(1/n)
HM=1/mean(1/a)
S.D=sd(a)
AM
GM
HM
S.D
Now the output is shown below:
Arithmetic Mean(AM) : 113216.2
Geometric Mean(GM) : 48962.31
Harmonic Mean(HM): 30603.74
Root mean square : 251561.2
Get Answers For Free
Most questions answered within 1 hours.