Question

Researchers took random samples from two different neighborhoods to de- termine whether daily face-to-face interactions with...

  1. Researchers took random samples from two different neighborhoods to de- termine whether daily face-to-face interactions with neighbors vary by the neighborhood. Residents of Neighborhood 1 reported an average of 1.42 face-to-face interactions per day and those in Neighborhood 2 reported 1.58 interactions. Is this difference significant at an alpha level of 0.05?

Face-to-face Interactions by Neighborhood

Sample 1 (Neighborhood 1)

X̄1 = 1.42
s1 = 0.10
n1 = 43

Sample 2 (Neighborhood 2)

X̄2 = 1.58
s2 = 0.78
n2 = 37

Homework Answers

Answer #1

Conclusion:

Since p-value = 0.2231 is greater than equal to alpha = 0.05

Then it is concluded that the null hypothesis Ho is fail to reject.

Therefore there is sufficient evidence to claim that the there is not different significant to an alpha level of 0.05

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A developer collects a random sample of the ages of houses from two neighborhoods and finds...
A developer collects a random sample of the ages of houses from two neighborhoods and finds that the summary statistics for each are as shown. Assume that the data come from a distribution that is Normally distributed. Complete parts a Find a? 95% confidence interval for the mean? difference,?1minus??2?, in ages of houses in the two neighborhoods if dfequals=62.3 Neighborhood 1 Neighborhood 2 n1= 30 n2= 35 y1= 53.8 y2= 42.4 s1=7.12 s2= 7.47
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=51,n2=36,x¯1=56.5,x¯2=75.3,s1=5.3s2=10.7n1=51,x¯1=56.5,s1=5.3n2=36,x¯2=75.3,s2=10.7 Find a 97.5% confidence interval for the difference μ1−μ2μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Two random samples are selected from two independent populations. A summary of the samples sizes, sample...
Two random samples are selected from two independent populations. A summary of the samples sizes, sample means, and sample standard deviations is given below: n1=41, n2=44, x¯1=52.3, x¯2=77.3, s1=6 s2=10.8 Find a 96.5% confidence interval for the difference μ1−μ2 of the means, assuming equal population variances. Confidence Interval =
Exercise 2. The following information is based on independent random samples taken from two normally distributed...
Exercise 2. The following information is based on independent random samples taken from two normally distributed populations having equal variances: Sample 1 Sample 2 n1= 15 n2= 13 x1= 50 x2= 53 s1= 5 s2= 6 Based on the sample information, determine the 90% confidence interval estimate for the difference between the two population means.
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 40 n2 = 50 x1 = 32.2 x2 = 30.1 s1 = 2.6 s2 = 4.3 (a) What is the point estimate of the difference between the two population means? (b) What is the degrees of freedom for the t distribution? (c) At 95% confidence, what is the margin of error? (d) What is the 95% confidence interval for the difference between...
Independent random samples selected from two normal populations produced the following sample means and standard deviations....
Independent random samples selected from two normal populations produced the following sample means and standard deviations. Sample 1 Sample 2 n1 = 15 n2 = 11 x1 = 7.1     x2= 9.2 s1 = 2.3 s2 = 2.8 Find the 80% Confidence Interval for the difference in the population means of Sample 1 and 2. Circle the correct conclusion below: A) The result suggests that there is no significant difference between the means. B) The result suggests that Sample 1 population...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.8 x2 = 20.1 s1 = 2.6 s2 = 4.6 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2. ) (b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) (c) At 95% confidence, what is the margin...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.5 x2 = 20.1 s1 = 2.2 s2 = 4.6 (a) What is the point estimate of the difference between the two population means? (Use x1 − x2. ) (b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) (c) At 95% confidence, what is the margin...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2...
The following results are for independent random samples taken from two populations. Sample 1 Sample 2 n1 = 20 n2 = 30 x1 = 22.5 x2 = 20.1 s1 = 2.9 s2 = 4.6 a) What is the point estimate of the difference between the two population means? (Use x1 − x2.) b) What is the degrees of freedom for the t distribution? (Round your answer down to the nearest integer.) c) At 95% confidence, what is the margin of...
Consider two independent random samples of sizes n1 = 14 and n2 = 10, taken from...
Consider two independent random samples of sizes n1 = 14 and n2 = 10, taken from two normally distributed populations. The sample standard deviations are calculated to be s1= 2.32 and s2 = 6.74, and the sample means are x¯1=-10.1and x¯2=-2.19, respectively. Using this information, test the null hypothesis H0:μ1=μ2against the one-sided alternative HA:μ1<μ2, using the Welch Approximate t Procedure (i.e. assuming that the population variances are not equal). a) Calculate the value for the t test statistic. Round your...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT