Answer:
Given,
X ~ Bin(n = 20 , p = 0.40)
mean = np = 20*0.40 = 8
Standard deviation = sqrt(npq) = sqrt(20*0.40*0.60) =2.191
a)
Consider,
P(X < 1.5) [since using continuity correction]
= P((x - u)/s < (1.5 - 8)/2.191)
= P(z < -2.97)
= 0.001489 [since from z table]
= 0.0015
Now P(X < 2) = P((x-u)/s < (2 - 8)/2.191)
= P(z < - 2.74)
= 0.0030719 [since from z table]
= 0.0031
b)
Given,
x = 10.5
mean = 8
standard deviation = 2.191
P(X > 10.5) = P((x-u)/s > (10.5 - 8)/2.191)
= P(z > 1.14)
= 0.1271432 [since from z table]
= 0.1271
P(X > 10) = P((x-u)/s > (10 - 8)/2.191)
= P(z > 0.91)
= 0.1814113 [since from z table]
= 0.1814
Get Answers For Free
Most questions answered within 1 hours.