Part a)
Standard Error = SP / √( (1/n1) + (1/n2)) = 4.2398
Part b)
Degree of freedom = n1 + n1 - 2 = 14 + 14 - 2 = 26
Part c)
Critical value t(α/2, n1 + n1 - 2) = t( 0.05/2, 14 + 14 - 2) = 2.056
Part d)
Margin of Error = t(α/2 , n1+n2-2) SP √( (1/n1) + (1/n2)) = 1.2453
Part e)
Confidence interval is :-
( X̅1 - X̅2 ) ± t( α/2 , n1+n2-2) SP √( (1/n1) + (1/n2))
t(α/2, n1 + n1 - 2) = t( 0.05/2, 14 + 14 - 2) = 2.056
( 82.1 - 84.9 ) ± t(0.05/2 , 14 + 14 -2) 1.6025 √ ( (1/14) +
(1/14))
Lower Limit = ( 82.1 - 84.9 ) - t(0.05/2 , 14 + 14 -2) 1.6025 √(
(1/14) + (1/14))
Lower Limit = -4.0453
Upper Limit = ( 82.1 - 84.9 ) + t(0.05/2 , 14 + 14 -2) 1.6025 √(
(1/14) + (1/14))
Upper Limit = -1.5547
95% Confidence Interval is ( -4.0453 , -1.5547
)
Get Answers For Free
Most questions answered within 1 hours.