Question

(14pts) Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p,...

(14pts) Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p, 0 < p < 1. (a) (6pts) Find P(X > Y ). (b) (8pts) Find P(X + Y = n) and P(X = k∣X + Y = n), for n = 2, 3, ..., and k = 1, 2, ..., n − 1.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Let Y1,Y2,··· ,Yn be i.i.d. with geometric distribution P(Y = y) = p(1−p)y-1 y=1, 2,...
(a) Let Y1,Y2,··· ,Yn be i.i.d. with geometric distribution P(Y = y) = p(1−p)y-1 y=1, 2, ........, 0<p<1. Find a sufficient statistic for p. (b) Let Y1,··· ,yn be a random sample of size n from a beta distribution with parameters α = θ and β = 2. Find the sufficient statistic for θ.
Let Y denote a geometric random variable with probability of success p, (a) Show that for...
Let Y denote a geometric random variable with probability of success p, (a) Show that for a positive integer a, P(Y > a) = (1 − p) a (b) Show that for positive integers a and b, P(Y > a + b|Y > a) = P(Y > b) = (1 − p) b This is known as the memoryless property of the geometric distribution.
Let X and Y be independent Geometric(p) random variables. (a) What is P(X < Y)? (b)...
Let X and Y be independent Geometric(p) random variables. (a) What is P(X < Y)? (b) What is the probability mass function of the minimum min(X, Y )?
Let X1 and X2 be two independent geometric random variables with the probability of success 0...
Let X1 and X2 be two independent geometric random variables with the probability of success 0 < p < 1. Find the joint probability mass function of (Y1, Y2) with its support, where Y1 = X1 + X2 and Y2 = X2.
Let X and Y be independent Geometric(p) random variables. What is P(X<Y)?
Let X and Y be independent Geometric(p) random variables. What is P(X<Y)?
Let X be a geometric random variable with parameter p . Find the probability that X≥10...
Let X be a geometric random variable with parameter p . Find the probability that X≥10 . Express your answer in terms of p using standard notation (click on the “STANDARD NOTATION" button below.)
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X...
X and Y ar i.i.d. exponential random variables with mean = 2. Let Z = X + Y. The probability that Z is less than or equal to 3 is:
   Let {Xi} be i.i.d. random variables with P(Xi=−1) = P(Xi= 1) = 1/2. Let Sn=...
   Let {Xi} be i.i.d. random variables with P(Xi=−1) = P(Xi= 1) = 1/2. Let Sn= 1 +X1+. . .+Xn be symmetric simple random walk with initial point S0 = 1. Find the probability that Sn eventually hits the point 0. Hint: Define the events A={Sn= 0 for some n} and for M >1, AM = {Sn hits 0 before hitting M}. Show that AM ↗ A.
Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X...
Let X and Y be random variables, P(X = −1) = P(X = 0) = P(X = 1) = 1/3 and Y take the value 1 if X = 0 and 0 otherwise. Find the covariance and check if random variables are independent. How to check if they are independent since it does not mean that if the covariance is zero then the variables must be independent.
Given that X is a geometric random variable with success probability = 1/3, Find Pr(X<1003 |...
Given that X is a geometric random variable with success probability = 1/3, Find Pr(X<1003 | X>1000). (Hint: must use memory-less property of geometric random variables).