Suppose the number of children in a household has a binomial distribution with parameters n = 24 and p= 40%. Find the probability of a household having :
(a) 17 or 23 children
(b) 21 or fewer children
(c) 20 or more children
(d) fewer than 23 children
(e) more than 21 children
Solution-a:
n=24
p=0.40
P(X=17)+P(X=23)
24C17*0.40^17*0.60^24-17+24C23*0.40^23*0.60^24-23
=0.0017+0.0000000101331
=0.0017
Solution-B:
P(X<=21)
1-P(X>21)
1-{P(X=22)+P(X=23)+P(X=24)}
=1-{ 1.74796e-07+ 1.01331e-08+ 2.81475e-10}
= 0.9999998
Solution-c;
P(X>=20)
P(X=20)+P(X=21)+P(X=22)+P(X=23)+P(X=24)
=1.51417e-05+ 1.922756e-06+1.74796e-07+ 1.01331e-08+ 2.81475e-10
= 1.724967e-05
=0.000017
Solution-d:
P(X<23)
1-P(X>23)
=1-P(X=24)
=1-2.81475e-10
=1
Solution-e:
P(X>21)
=P(X=22)+P(X=23)+P(X=24)
=1.74796e-07+ 1.01331e-08+ 2.81475e-10}
=1.852106e-07
=0.0000001852
Get Answers For Free
Most questions answered within 1 hours.